

1

MINION BACKUP :
QUICK START

Minion Backup by MidnightDBA is a stand-alone backup solution that can be deployed on any number of

servers, for free. Minion Backup is comprised of SQL Server tables, stored procedures, and SQL Agent jobs.

For links to downloads, tutorials, and articles, see http://MinionWare.net

This document explains Minion Backup by MidnightDBA (“Minion Backup”), its uses, features, moving parts,

and examples.

For video tutorials on Minion Backup, see the Minion Backup playlist on our YouTube channel:

https://www.youtube.com/user/MidnightDBA

Minion Backup is one module of

the Minion suite of products.

What’s new in MB 1.3
 Increased international support

 Inline Tokens

 Enhanced restore functionality

o Minion.BackupRestoreSettingsPath – This table stores the path settings for restore

scenarios. In other words, here is where you define the paths and file names the system will

restore to.

o Minion.BackupRestoreTuningThresholds – This table holds thresholds used to determine

when to change the tuning of a restore; and the tuning settings per threshold.

 New fields in Minion.BackupSettingsPath - Minion.BackupSettingsPath now has new fields that let

you specify FileName and FileExtension.

 Keyword search in Minion.HELP.

Quick Start
This entire document is available within the Minion Backup product using the stored procedure Minion.HELP.

System requirements:

http://minionware.net/
http://minionware.net/
https://www.youtube.com/user/MidnightDBA

2

 SQL Server 2008* or above.

 The sp_configure setting xp_cmdshell must be enabled**.

 PowerShell 2.0 or above; execution policy set to RemoteSigned.

Once MinionBackup1.3.sql has been run, nothing else is required. From here on, Minion Backup will run

nightly to back up all non-TempDB databases. The backup routine automatically handles databases as they

are created, dropped, or renamed.

View the “Minion Install Guide.docx” (in the extracted MinionWare folder) for full instructions and

information on the installer. The basic steps to installing Minion Backup are:

1. Download MinionBackup1.3.zip from MinionWare.nethttp://www.MidnightSQL.com/Minion and

extract all files. Note: If you have never used a MinionWare product, extract the “MinionWare”

folder and files to the location of your choice. If you have an existing MinionWare folder from

previous downloads, extract the files there.

2. Open Powershell as administrator, and use Get-ExecutionPolicy to determine the current execution

policy. If it is Unrestricted or RemoteSigned, the script should be able to run. Otherwise, use Set-

ExecutionPolicy RemoteSigned

3. For each of the following files, right-click and select Properties, and select “Unblock”. (This allows

you to run scripts downloaded from the web using RemoteSigned.)

a. …\MinionWare\MinionSetupMaster.ps1

b. …\MinionWare\MinionSetup.ps1

c. …\MinionWare\Includes\BackupInclude.ps1

4. Run MinionSetupMaster.ps1 in the PowerShell window as follows:

.\MinionSetupMaster.ps1 <servername> <DBName> <Product>

Examples:

.\MinionSetupMaster.ps1 localhost master Backup

or

.\MinionSetupMaster.ps1 YourServer master Backup

Note that you can install multiple products, and to multiple servers. For more information, see the “Minion

Install Guide.docx”.

Once MinionBackup1.3.sql has been run, nothing else is required. From here on, Minion Backup will run

nightly to back up all non-TempDB databases. The backup routine automatically handles databases as they

are created, dropped, or renamed.

For simplicity, this Quick Start guide assumes that you have installed Minion Backup on one server, named

“YourServer”.

Note: You can also use the “MinionMassInstall.ps1” PowerShell script provided with the Minion Backup

download to install Minion Backup on dozens or hundreds of servers at once, just as easily as you would

install it on a single instance.

http://minionware.net/%22http:/www.MidnightSQL.com/Minio

3

*There is a special edition of Minion Backup specifically for SQL Server 2005.

But, be aware that this edition will not be enhanced or upgraded,

some functionality is reduced, and it will have limited support.

** xp_cmdshell can be turned on and off with the database

PreCode / PostCode options, to help comply with security policies.

For more information on xp_cmdshell, see “Security Theater”

on www.MidnightDBA.com/DBARant.

Change Schedules
Minion Backup offers a choice of scheduling options. This quick start section covers the default method of

scheduling: table based scheduling. We will cover parameter based schedules, and hybrid schedules, in the

section titled “How To: Change Backup Schedules”.

Table based scheduling
In conjunction with the “MinionBackup-AUTO” job, the Minion.BackupSettingsServer table allows you to

configure flexible backup scheduling scenarios. By default, Minion Backup comes installed with the following

scenario:

 The MinionBackup-Auto job runs once every 30 minutes, checking the Minion.BackupSettingsServer table

to determine what backup should be run.

 In Minion.BackupSettingsServer:

 Full system backups are scheduled daily at 10:00pm.

 Full user backups are scheduled on Saturdays at 11:00pm.

 Differential backups for user databases are scheduled daily except Saturdays (weekdays and on

Sunday) at 11:00pm.

 Log backups for user databases run daily as often as the MinionBackup-AUTO job runs (every 30

minutes).

The following table displays the first few columns of this default scenario in Minion.BackupSettingsServer:

ID DBType BackupType Day ReadOnly BeginTime EndTime MaxForTimeframe

1 System Full Daily 1 22:00:00 22:30:00 1
2 User Full Saturday 1 23:00:00 23:30:00 1

3 User Diff Weekday 1 23:00:00 23:30:00 1
4 User Diff Sunday 1 23:00:00 23:30:00 1

5 User Log Daily 1 00:00:00 23:59:00 48

Let’s walk through three different schedule changes.

Scenario 1: Run log backups every 15 minutes, instead of half hourly. To change the default setup in order

to run log backups every 15 minutes, change the MinionBackup-AUTO job schedule to run once every 15

http://www.midnightdba.com/DBARant/?p=1243
http://www.midnightdba.com/DBARant

4

minutes, and update the BackupType=’Log’ row in Minion.BackupSettingsServer to increase the

“MaxForTimeframe” value to 96 or more (as there will be a maximum of 96 log backups per day).

Scenario 2: Run full backups daily, and no differential backups. To change the default setup in order to run

daily full backups and eliminate differential backups altogether:

1. Update the DBType=’User’, BackupType=‘Full’ row in Minion.BackupSettingsServer, setting the Day

field to “Daily”.

2. Update the BackupType=’Diff’ rows in Minion.BackupSettingsServer, setting the isActive fields to 0.

Scenario 3: Run differential backups twice daily. To change the default setup in order to differential backups

twice daily, insert two new rows to Minion.BackupSettingsServer for BackupType=’Diff’, one for weekdays

and one for Sundays, as follows:

INSERT INTO Minion.BackupSettingsServer
 ([DBType],
 [BackupType] ,
 [Day] ,
 [ReadOnly] ,
 [BeginTime] ,
 [EndTime] ,
 [MaxForTimeframe] ,
 [SyncSettings] ,
 [SyncLogs] ,
 [IsActive] ,
 [Comment]
)
SELECT 'User' AS DBType,
 'Diff' AS [BackupType] ,
 'Weekday' AS [Day] ,
 1 AS [ReadOnly] ,
 '06:00:00' AS [BeginTime] ,
 '07:00:00' AS [EndTime] ,
 1 AS [MaxForTimeframe] ,
 0 AS [SyncSettings] ,
 0 AS [SyncLogs] ,
 1 AS [IsActive] ,
 'Weekday morning differentials' AS [Comment];

INSERT INTO Minion.BackupSettingsServer
 ([DBType],
 [BackupType] ,
 [Day] ,
 [ReadOnly] ,
 [BeginTime] ,
 [EndTime] ,
 [MaxForTimeframe] ,
 [SyncSettings] ,
 [SyncLogs] ,

5

 [IsActive] ,
 [Comment]
)
SELECT 'User' AS DBType,
 'Diff' AS [BackupType] ,
 'Sunday' AS [Day] ,
 1 AS [ReadOnly] ,
 '06:00:00' AS [BeginTime] ,
 '07:00:00' AS [EndTime] ,
 1 AS [MaxForTimeframe] ,
 0 AS [SyncSettings] ,
 0 AS [SyncLogs] ,
 1 AS [IsActive] ,
 'Sunday morning differentials' AS [Comment];

These will provide a second differential backup at 6:00am on weekdays and Sundays, to supplement the

existing differential backup in the evenings. The contents of Minion.BackupSettingsServer will then look (in

part) like this:

ID DBType BackupType Day ReadOnly BeginTime EndTime MaxForTimeframe

1 System Full Daily 1 22:00:00 22:30:00 1
2 User Full Saturday 1 23:00:00 23:30:00 1

3 User Diff Weekday 1 23:00:00 23:30:00 1
4 User Diff Sunday 1 23:00:00 23:30:00 1

5 User Log Daily 1 00:00:00 23:59:00 48

6 User Diff Weekday 1 06:00:00 07:00:00 1
7 User Diff Sunday 1 06:00:00 07:00:00 1

Important notes:

 Always set the MaxForTimeframe field. This determines how many of the given backup may be taken in

the defined timeframe. In the insert statement above, MaxForTimeframe is set to 1, because we only

want to allow 1 differential backup operation during the 6:00am hour.

 The backup job should run as often as your most frequent backup. For example, if log backups should

run every 5 minutes, schedule the job for every 5 minutes. And be sure to set the MaxForTimeframe

sufficiently high enough to allow all of the log backups. In this case, we take log backups every 5 minutes

for each 24 hour period, meaning up to 288 log backups a day; so, we could set MaxForTimeframe = 288,

or any number higher (just to be sure).

Change Default Settings
Minion Backup stores default settings for the entire instance in a single row (where DBName=’MinionDefault’

and BackypType=’All’) in the Minion.BackupSettings table.

6

Warning: Do not delete the MinionDefault row, or rename the DBName for the MinionDefault row, in

Minion.BackupSettings!

To change the default settings, run an update statement on the MinionDefault row in Minion.BackupSettings.

For example:

UPDATE Minion.BackupSettings
SET [Exclude] = 0 ,
 [LogLoc] = 'Local' ,
 [HistRetDays] = 60 ,
 [ShrinkLogOnLogBackup] = 0 ,
 [ShrinkLogThresholdInMB] = 0 ,
 [ShrinkLogSizeInMB] = 0
WHERE [DBName] = 'MinionDefault'
 AND BackupType = 'All';

Warning: Choose your settings wisely; these settings can have a massive impact on your backups. For

example, if you want to verify the backup for YourDatabase, but accidentally set the Verify option for the

default instance, all of the additional verify operations would cause an unexpected delay.

For more information on these settings, see the “Minion.BackupSettings” section.

7

MINION BACKUP

Contents in Brief

Quick Start ... 1

Top 20 Features .. 7

Architecture Overview .. 9

Moving Parts ... 16

“About” Topics .. 72

“How To” Topics: Basic Configuration .. 86

“How To” Topics: Backup Mirrors and File Actions .. 108

“How To” Topics: Advanced ... 122

Revisions.. 142

FAQ .. 144

About Us .. 147

Top 20 Features
Minion Backup by MidnightDBA is a stand-alone database backup module. Once installed, Minion Backup

automatically backs up all online databases on the SQL Server instance, and will incorporate databases as

they are added or removed.

Twenty of the very best features of Minion Backup are, in a nutshell:

1. Live Insight – See what Minion Backup is doing every step of the way. You can even see the percent

complete for each backup as it runs.

2. Dynamic Backup Tuning – Configure thresholds and backup tuning settings. Minion Backup will

adjust the tuning settings based on your thresholds! Tuning settings can be configured even down to

the time of day for maximum control of your resources.

3. Stripe, mirror, copy, and/or move backup files – Minion Backup provides extensive file action

functionality, all without additional jobs. You even get to choose which utility performs the

operations.

4. Flexible backup file delete and archive – Each database and backup type can have an individual

backup file retention setting. And, you can mark certain backup files as “Archived”, thus preventing

Minion Backup from deleting them.

8

5. Shrink log file on backup – Specify the size threshold for shrinking your log file. Minion Backup logs

the before and after log sizes.

6. Backup certificates – Back up your server and database certificates with secure, encrypted

passwords.

7. Backup ordering – Back up databases in exactly the order you need.

8. Extensive, useful logging – Use the Minion Backup log for estimating the end of the current backup

run, troubleshooting, planning, and reporting. And errors get reported in the log table instead of in

text files. There’s almost nothing MB doesn’t log.

9. Run “missing” backups only – Did some of your database backups fail last night? The “missing”

keyword allows you to rerun a backup operation, catching those backups that failed in the last run

(for that database type and backup type). You can even tell MB to check for missing backup

automatically.

10. HA/DR Aware – Our new Data Waiter feature synchronizes backup settings, backup logs, or both

among Availability Group nodes; mirroring partners; log ship targets; or any other SQL Server

instance. There are other features that enhance your HA/DR scenarios as well.

11. Flexible include and exclude – Backup only the databases you want, using specific database names,

LIKE expressions, and even regular expressions.

12. Run code before or after backups – This is an extraordinarily flexible feature that allows for nearly

infinite configurability.

13. Integrated help – Get help on any Minion Backup object without leaving Management Studio. And,

use the new CloneSettings procedure to generate template insert statements for any table, based on

an example row in the table.

14. Built-in Verify – If you choose to verify your backups, set the verify command to run after each

backup, or after the entire set of backups.

15. Single-job operation – You no longer need multiple jobs to run your backups. MB allows you to

configure fairly complex scenarios and manage only a single job.

16. Encrypt backups – In SQL Server 2014 and beyond, you can choose to encrypt your backups.

17. Compatible with Availability Groups – Minion Backup takes full backup of Availability Group

scenarios. You can not only use the preferred AG replica for your backups, but you can also specify

specific replicas for each backup type.

18. Scenario testing— Dynamic tuning, file delete, and file paths all have facilities for testing your

configuration before you rely on it.

19. Automated operation – Run the Minion Backup installation scripts, and it just goes. You can even

rollout to hundreds of servers almost as easily as you can to a single server.

20. Granular configuration without extra jobs – Configure extensive settings at the default, and/or

database levels with ease. Say good-bye to managing multiple jobs for specialized scenarios. Most

of the time you’ll run MB with a single job.

For links to downloads, tutorials and articles, see

www.MinionWare.nethttp://www.MidnightSQL.com/Minion.

9

Architecture Overview
Minion Backup is made up of SQL Server stored procedures, functions, tables, and jobs. There is also an

optional PowerShell script for mass installation (MinionMassInstall.ps1) included in the download. The tables

store configuration and log data; functions encrypt and decrypt sensitive data; stored procedures perform

backup operations; and the jobs execute and monitor those backup operations on a schedule.

This section provides a brief overview of Minion Backup elements at a high level: configuration hierarchy,

include/exclude precedence, run time configuration, logging and alerting.

Note: Minion Backup is installed in the master database by default. You certainly can install Minion in

another database (like a DBAdmin database), but when you do, you must also verify that the job points to the

appropriate database.

Configuration Settings Hierarchy
The basic configuration for backup – including most of the BACKUP DATABASE and BACKUP LOG options – is

stored in a table: Minion.BackupSettings. A default row in Minion.BackupSettings

(DBName=’MinionDefault’) provides settings for any database that doesn’t have its own specific settings.

There is a hierarchy of granularity in Minion.BackupSettings, where more specific configuration levels

completely override the less specific levels. That is:

1. The MinionDefault row applies to all databases that do NOT have any database-specific rows.

2. A MinionDefault row with BackupType=’Full’ (or Log, or Diff) provides settings for that backup type,

for all databases that do NOT have any database-specific rows. This overrides the MinionDefault / All

row.

Minion Enterprise Hint

Minion Enterprise (ME) is our enterprise management solution for centralized SQL Server

management and alerting. This solution allows your database administrator to manage

an enterprise of one, hundreds, or even thousands of SQL Servers from one central

location. ME provides not just alerting and reporting, but backups, maintenance,

configuration, and enforcement. ME integrates with Minion Backup.

See www.MinionWare.net for more information, or

email us today at Support@MidnightDBA.com for a demo!

http://www.minionware.net/
mailto:Support@MidnightDBA.com

10

3. A database-specific row with BackupType=’All’ causes all of that database’s backup settings to come

from that particular row (not from a MinionDefault row).

4. A database-specific row with BackupType=’Full’ (or Log, or Diff) causes all of that database’s backup

settings for that backup type to come from that particular row (not from a MinionDefault row, nor

from the database-specific row where backupType=’All’).

The Configuration Settings Hierarchy Rule
If you provide a database-specific row, be sure that all backup types are represented in the table for that

database. For example, if you insert a row for DBName=’DB1’, BackupType=’Full’, then also insert a row for

DBName=’DB1’, BackupType=’All’ (or, alternately, two rows for DBName=’DB1’: one for Diff, and one for

Log). Once you configure the settings context at the database level, the context stays at the database level,

and not the default ‘MinionDefault’ level.

This document refers to the Configuration Hierarchy Settings Rule throughout, in situations where we must

insert additional row(s) to provide for all backup types.

Note: “Exclude” is a minor exception to the hierarchy rules. If Exclude=1 for a database where

BackupType=’All’, then all backups for that database are excluded.

Other tables hold additional backup configuration settings, and follow a similar hierarchy pattern.

Example 1: Proper Configuration
Let us take a simple example, in which these are the contents of the Minion.BackupSettings table (not all

columns are shown here):

ID DBName BackupType Exclude DBPreCode
1 MinionDefault All 0 ‘Exec SP1;’

2 DB1 All 0 ‘Exec SP1;’
3 DB1 Full 0 NULL

There are a total of 30 databases on this server. As backups run throughout the week, the settings for

individual databases will be selected as follows:

 Full backups of database DB1 will use only the settings from the row with ID=3.

 Differential and log backups of database DB1 will use only the settings from the row with ID=2.

 All other database backups (full, log, and differential) will use the settings from the row with ID=1.

Note that a value left at NULL in one of these fields means that Minion Backup will use the setting that the

SQL Server instance itself uses. So in our example, full backups of DB1 will run no precode; while all other

backups will run ‘Exec SP1;’ as the database precode.

Example 2: Improper Configuration
Now let’s walk through another simple example, in which these are the contents of the

Minion.BackupSettings table (not all columns are shown here):

11

ID DBName BackupType Exclude DBPreCode
1 MinionDefault All 0 ‘Exec SP1;’

2 DB1 Diff 0 ‘Exec SP1;’
3 DB1 Full 0 NULL

There are a total of 30 databases on this server. As backups run throughout the week, the settings for

individual databases will be selected as follows:

 Full backups of database DB1 will use only the settings from the row with ID=3.

 Differential backups of database DB1 will use only the settings from the row with ID=2.

 Log backups of database DB1 will fail, because no row exists that covers DB1 / log backups. Again:

because we have specified settings for DB1 at the database level, Minion Backup will NOT use the

MinionDefault settings for DB1.

 All other database backups (full, log, and differential) will use the settings from the row with ID=1.

DB1 log backup failures will show up in the log tables (most easily viewable in Minion.BackupLogDetails,

which will show a status that begins with “FATAL ERROR”).

Example 3: The “Exclude” Exception
Here we will demonstrate the effect of “Exclude” in rows of BackupType=’All’. In this example, these are the

contents of the Minion.BackupSettings table (not all columns are shown here):

ID DBName BackupType Exclude DBPreCode
1 MinionDefault All 0 ‘Exec SP1;’

2 DB1 All 1 ‘Exec SP1;’
3 DB1 Full 0 NULL

There are a total of 30 databases on this server. As backups run throughout the week, the settings for

individual databases will be selected as follows:

 Backups of all types for database DB1 will be excluded, because of the row with ID=2. The log will not

display failed backups for DB1; there will simply be no entry in the log for DB1 backups, as they are

excluded.

 Even full backups of database DB1 will be excluded.

 All other database backups (full, log, and differential) will use the settings from the row with ID=1.

For more information, see the configuration sections in “How To” Topics: Basic Configuration (such as “How

to: Configure settings for a single database”), and “Minion.BackupSettings”

Include and Exclude Precedence
Minion Backup allows you to specify lists of databases to include in a backup routine, in several different

ways. First of all, databases are always divided into “system” and “user” databases.

file:///C:/Users/jen.MIDNIGHT/AppData/Roaming/Microsoft/Word/How_To

12

Include and Exclude strings
Within those divisions, the primary means of identifying what databases should be backed up in a given

operation is by the use of Include and Exclude strings. As noted in the following section (“Run Time

Configuration”), Include and Exclude can be defined as part of either a table configured schedule, or a

parameter based schedule.

The important point to understand now, however, is how Include and Exclude work at a basic level. Include

and Exclude may each have one of three kinds of values:

 ‘All’ or NULL (which also means ‘All’)

 ‘Regex’

 An explicit, comma-delimited list of database names and LIKE expressions (e.g., @Include=’DB1,DB2%’).

Note: For this initial discussion, we are ignoring the existence of the Exclude bit, while we introduce the

Include and Exclude strings. We’ll fold the Exclude bit concept back in at the end of the section.

The following table outlines the interaction of Include and Exclude:

 Exclude=’All’ or IS NULL Exclude=Regex Exclude=[Specific list]
Include=’All’ or
IS NULL

Run all backups Run all, minus regex
exclude

Run all, minus explicit
exclude

Include=Regex Run only databases that
match the configured
RegEx expression

Run only databases that
match the configured
RegEx expression

Run only databases that
match the configured
RegEx expression

Include=[Specific
list]

Run only specific includes

Run only specific includes

Run only specific includes

Note that regular expressions phrases are defined in a special settings table (Minion.DBMaintRegexLookup).

Let us look at a handful of scenarios, using this table:

 Include IS NULL, Exclude IS NULL – Run all backups.

 Include = ‘All’, Exclude = ‘DB%’ – Run all backups except those beginning with “DB”.

 Include=’Regex’, Exclude=’DB2’ – Run only databases that match the configured RegEx expression. (The

Exclude is ignored.)

IMPORTANT: You will note that Exclude is ignored in any case where Include is not ‘All’/NULL. Whether

Include is Regex or is a specific list, an explicit Include should be the final word. The reason for this rule is

that we never want a scenario where a database simply cannot be backed up.

Exclude bit
In addition to the Include and Exclude strings, Minion Backup also provides an “Exclude” bit in the primary

settings table (Minion.BackupSettings) that allows you to exclude backups for a particular database, or a

particular database and backup type.

13

The following table outlines the interaction of the Include string and the Exclude bit:

 Exclude=0 Exclude=1
Include=’All’ or
IS NULL

Run all backups Run all, minus excluded
databases’ backup types

Include=Regex Run only databases that
match the configured
RegEx expression

Run only databases that
match the configured
RegEx expression

Include=[Specific
list]

Run only specific includes

Run only specific includes

Let us look at a handful of scenarios, using this table:

 Include IS NULL, Exclude bit=0 – Run all backups.

 Include = ‘All’, Exclude = 1 for DB2 / All – Run all backups except DB2.

 Include=’Regex’, Exclude=1 for DB2 / All – Run only databases that match the configured RegEx

expression. (The Exclude bit is ignored.)

IMPORTANT: You will note that the Exclude bit, like the Exclude string, is ignored in any case where Include is

not ‘All’/NULL. Whether Include is Regex or is a specific list, an explicit Include should be the final word.

The reason for this rule is that we never want a scenario where a database simply cannot be backed up.

Run Time Configuration
The main Minion Backup stored procedure – Minion.BackupMaster – can be run in one of two ways: with

table configuration, or with parameters.

Run Minion.BackupMaster using table configuration: If you run Minion.BackupMaster without parameters,

the procedure uses the Minion.BackupSettingsServer table to determine its runtime parameters (including

the schedule of backup jobs per backup type, and which databases to Include and Exclude). This is how MB

operates by default, to allow for the most flexible backup scheduling with as few jobs as possible.

For more information, see the sections “How To: Change Backup Schedules”, “Minion.BackupSettingsServer”,

and “Minion.BackupMaster”.

Run Minion.BackupMaster with parameters: The procedure takes a number of parameters that are specific

to the current maintenance run. For example:

 Use @DBType to specify ‘System’ or ‘User’ databases.

 Use @BackupType to specify Full, Log, or Diff backups.

 Use @StmtOnly to generate backup statements, instead of running them.

 Use @Include to back up a specific list of databases, or databases that match a LIKE expression.

Alternately, set @Include=’All’ or @Include=NULL to back up all databases.

 Use @Exclude to exclude a specific list of databases from backup.

14

 Use @ReadOnly to (1) include ReadOnly databases, (2) exclude ReadOnly databases, or (3) only

include ReadOnly databases.

For more information, see the section “How To: Change Backup Schedules” and “Minion.BackupMaster”.

Logging
As a Minion Backup routine runs, it keeps logs of all activity. The two primary log tables are:

 Minion.BackupLog – a log of activity at the batch level.

 Minion.BackupLogDetails – a log of activity at the database level.

The Status column for the current backup run is updated continually in each of these tables while the batch is

running. This way, status information (Live Insight) is available to you while backup is still running, and

historical data is available after the fact for help in planning future operations, reporting, troubleshooting,

and more.

Minion Backup logs additional information in a number of other tables, including:

 Minion.BackupDebug – Log of high level debug data.

 Minion.BackupDebugLogDetails – Log of detailed debug data.

 Minion.BackupFileListOnly – log of RESTORE FILELISTONLY output for each backup taken

 Minion.BackupFiles – a log of all backup files (whether they originate from a database backup, a

certificate backup, a copy, or a move). Note that a backup that is striped to 10 files will have 10 rows

in this table.

 Minion.SyncCmds – a log of commands used to synchronize settings and log tables to configured

synchronization servers. This table is both a log table and a work table: the synchronization process

uses Minion.SyncCmds to push the synchronization commands to target servers, and it is also a log

of those commands (complete and incomplete).

 Minion.SyncErrorCmds – a log of synchronization commands that have failed, to be retried again

later.

Minion Backup maintains all log tables are automatically. The retention period for all log tables is set in the

HistoryRetDays field in Minion.BackupSettings.

Alerting
Minion Backup doesn’t include an alerting mechanism, though you can write one easily using the log tables.

As of Minion Backup 1.3, jobs that fail will not show a “succeeded” status if one or more backups fail; the

error and failed backup will also be recorded in the log.

Here is one example of an alerting mechanism. Ideally, you could create a stored procedure, and simply call

that procedure in step 2 of your backup job(s).

---- Declare variables (could be SP parameters)

15

DECLARE @profile_name sysname = 'Server DBMail' ,
 @recipients VARCHAR(MAX) = 'SQLsupport@Company.com';

---- Declare and set internal variables
DECLARE @Query NVARCHAR(MAX) ,
 @Subject NVARCHAR(255);

SET @Query = 'SELECT ID ,
 ExecutionDateTime ,
 ServerLabel ,
 @@SERVERNAME AS Servername ,
 STATUS ,
 PctComplete ,
 DBName
FROM master.Minion.BackupLogDetails
WHERE ExecutionDateTime = (SELECT MAX(ExecutionDateTime)
 FROM master.Minion.BackupLogDetails
)
 AND STATUS NOT IN (''All Complete'', ''Complete'');';

SELECT @Subject = @@Servername + ' ALERT: Log backup failed';

---- Execute query to pull the rowcount
EXEC sp_executesql @Query;

---- If query returned rows, email to recipients
IF @@ROWCOUNT > 0
 EXEC msdb.dbo.sp_send_dbmail
 @profile_name = @profile_name,
 @recipients = @recipients,
 @query = @Query ,
 @subject = @Subject,
 @attach_query_result_as_file = 0 ;

Important notes:

 This is just one example of how you could code a backup alert for Minion Backup. Review and modify

this code for your own use, if you like, or grow your own.

 We do not recommend basing alerts off of Status=’Complete’, because a successful backup run will

not always be marked “Complete”. It will be “All Complete” if the backup batch was run by

Minion.BackupMaster, and “Complete” if run by Minion.BackupDB.

16

Moving Parts

Overview of Tables
The tables in Minion Backup fall into two categories: those that store configured settings, and those that log

operational information.

The settings tables are:

 Minion.BackupCert – This table allows you to configure which types of certificates to back up, and the

password to use when backing them up.

 Minion.BackupEncryption – This table stores data for each backup encryption scenario you define.

 Minion.BackupRestoreSettingsPath – This table stores the path settings for restore scenarios. In other

words, here is where you define the paths and file names the system will restore to.

 Minion.BackupRestoreTuningThresholds – This table holds thresholds used to determine when to

change the tuning of a restore; and the tuning settings per threshold.

 Minion.BackupSettings – This table holds backup settings at the default level, database level, and backup

type level. You may insert rows to define backup settings per database, per type, per type and database;

or, you can rely on the system-wide default settings (defined in the “MinionDefault” row); or a

combination of these.

 Minion.BackupSettingsPath – This table holds location configurations for each type of backup. In other

words, here is where you define the paths the system will back up to.

Minion Enterprise Hint

Minion Backup doesn’t include an alerting mechanism, though you can write one easily

using the log tables. Minion Enterprise provides central backup reporting and alerting.

The ME alert for all databases includes the reasons why any backups fail, across the entire

enterprise. Further, you can set customized alerting thresholds at various levels (server,

database, and backup type). For example, you might set the alert thresholds for some

servers to alert on missing backups after a day; for a handful of databases, to alert at half

a day; for log backups, alert on 5 hours; and for development servers, not at all. The

choice is yours.

See www.MinionWare.net for more information, or

email us today at Support@MidnightDBA.com for a demo!

http://www.minionware.net/
mailto:Support@MidnightDBA.com

17

 Minion.BackupSettingsServer – This table contains server-level backup settings. The backup job

(MinionBackup-AUTO) runs regularly in conjunction with this table to provide a wide range of backup

options, all without introducing additional jobs.

 Minion.BackupTuningThresholds – This table holds thresholds used to determine when to change the

tuning of a backup; and the tuning settings per threshold.

 Minion.DBMaintRegexLookup – Allows you to include or exclude databases from backup (or from

reindex, checkdb, or all maintenance), based off of regular expressions.

 Minion.SyncServer – This table allows you to define synchronization partners: instances to push settings

and/or log data to.

Logs:

 Minion.BackupFileListOnly – A Log of RESTORE FILELISTONLY output for each backup taken

 Minion.BackupFiles – A log of all backup files (whether they originate from a database backup, a

certificate backup, a copy, or a move). Note that a backup that is striped to 10 files will have 10 rows in

this table.

 Minion.BackupLog – Holds a database-level summary of the backup operation per database. Each row

contains the database name, operation status, the start and end time of the backup, and much more.

This is updated as each backup occurs, so that you have Live Insight into active operations.

 Minion.BackupLogDetails – Holds a log of backup activity at the database level.

 Minion.SyncCmds – a log of commands used to synchronize settings and log tables to configured

synchronization servers. This table is both a log table and a work table: the synchronization process uses

Minion.SyncCmds to push the synchronization commands to target servers, and it is also a log of those

commands (complete and incomplete).

 Minion.SyncErrorCmds – a log of synchronization commands that have failed, to be retried again later.

Settings Tables Detail

Minion.BackupCert
This table allows you to configure which types of certificates to back up, and the password to use when

backing them up. As far as Minion Backup is concerned, there are only two types of certificates: ServerCert,

and DatabaseCert. So, this table will only ever have two rows: one for server certificates, and one for

database certificates.

Certificates that are enabled and configured for backups, are automatically backed up with every full backup.

For more information on enabling and configuring certificate backups, see the “How to: Configure certificate

backups” section.

Note: The certificate backup password is stored encrypted.

Name Type Description
ID int Primary key row identifier.

CertType varchar Certificate type.

18

Valid inputs:
ServerCert
DatabaseCert

CertPword varbinary Certificate password. This is the password
used to protect the certificate backup.

BackupCert bit Flag that determines whether or not to back
up this certificate type.

Discussion:

You can back certificates up to as many locations as you like. For example, to back up server certificates to

two location, insert one row for each target location into Minion.BackupSettingsPath with BackupType =

‘ServerCert’, and the remaining fields populated as specified in the “How to: Configure certificate backups”

section.

Note that certificate entries in Minion.BackupSettingsPath do not need to populate DBName. We use

DBName=‘MinionDefault’ in the examples given, but one could just as easily use DBName=’Certificate’,

DBName=’ServerCert’, or any other non-null value. The important thing is that BackupType must be set to

‘ServerCert’ or ‘DatabaseCert’.

Minion.BackupEncryption
This table stores the certificate, encryption, and thumbprint data for each backup encryption scenario you

define.

Name Type Description
ID Int Primary key row identifier.

DBName sysname Database name.
BackupType varchar Backup type.

Valid inputs:
All
Full
Diff
Log

Note that “All” encompasses full, differential,
and log backups.

CertType varchar Certificate type. Valid inputs:
BackupEncryption

CertName varchar Certificate name.

EncrAlgorithm varchar Encryption algorithm. For a list of valid inputs,
see the list of key_algorithm entries in the
MSDN article https://msdn.microsoft.com/en-
us/library/ms189446.aspx

https://msdn.microsoft.com/en-us/library/ms189446.aspx
https://msdn.microsoft.com/en-us/library/ms189446.aspx

19

ThumbPrint varbinary A globally unique hash of the certificate. See

https://msdn.microsoft.com/en-

us/library/ms189774.aspx
IsActive bit The current row is valid (active), and should be

used in the Minion Backup process.

Minion.BackupRestoreSettingsPath
This table stores the path settings for restore scenarios. In other words, here is where you define the paths

and file names the system will restore to.

This table comes with a default row, with DBName = ‘MinionDefault’ and Servername = ‘localhost’. This

enables you to generate restore statements without any additional configuration, and gives an exmple of

restore path configuration.

Note: The only valid restore type in Minion.BackupRestoreSettingsPath is ‘Full’, because only a restore of a

full backup requires path information.

For more information, see “How to: Set up Restore Profiles”.

Name Type Description

ID int Primary key row identifier.
DBName varchar Database name.

Valid inputs:
<specific database name>
MinionDefault

ServerName varchar The name of the server to restore to.

RestoreType varchar Restore type.

Note that this can only be “Full”, because only a
full restore will require a path.

Valid inputs:
Full

FileType Varchar The category of files that this row configures.

FileType can contain either the value
“FileName” or the value “FileType”.

 “FileName” means that the TypeName
field (below) is the name of a file
(without the extension).

 “FileType” means that TypeName is
mdf, ndf, ldf, or All.

Valid values:
FileType
FileName

https://msdn.microsoft.com/en-us/library/ms189774.aspx
https://msdn.microsoft.com/en-us/library/ms189774.aspx

20

TypeName varchar The name or type of file that this row
configures; either a file name, or a file type (as
specified in FileType).

Valid values:
<the logical file name>
mdf
ndf
ldf
All

RestoreDrive varchar The drive to restore to. This is only the drive
letter of the restore destination.

IMPORTANT: If this is drive, this must end with
colon-slash (for example, ‘M:\’). If this is URL,
use the base path (for example, ‘\\server2\’)

RestorePath varchar The path to restore to. This is only the path (for
example, ‘SQLBackups\’) of the restore
destination.

This field accepts Inline Tokens.

RestoreFileName Varchar The name of the file, without the extension.
RestoreFileExtension Varchar The file extension, with the period. For

example: “.mdf”.

NULL and MinionDefault will give the file its
original file extension.

This field accepts Inline Tokens.

Examples:
NULL
MinionDefault
.mdf
%BackupTypeExtension%

BackupLocation Varchar The location of the backup file to restore from.
E.g., original backup location, copy location, or
mirror location.

Backup and Primary mean the same thing; it is
the original backup location recorded by Minion
Backup. Mirror, Copy, and Move mean the
mirror (or copy or move) location, as recorded
by MB.

Valid value:
Backup
Primary
Mirror
Copy

21

Move
RestoreDBName Varchar The name to give the newly restored database.

This field accepts Inline Tokens.

ServerLabel Varchar A user-customized label for the server name. It
can be the name of the server, server\instance,
or a label for a server.

This is used for the restore file path.

Cannot contain an Inline Token.

PathOrder int Not currently in use.

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

Comment varchar For your reference only. You can label each row
with a short description and/or purpose.

Minion.BackupRestoreTuningThresholds
This table holds the thresholds used to determine the tuning of a restore.

The principles for tuning restores are exactly the same as those for tuning backups. We have chosen,

therefore, not to duplicate tuning documentation for both backup and restore. Refer to the sections “About:

Dynamic Backup Tuning Thresholds” and “How to: Set up dynamic backup tuning thresholds”.

Name Type Description
ID bigint Primary key row identifier.

ServerName varchar Name of the remote server.

Valid inputs:
<specific server name>
MinionDefault

DBName sysname Database name

Valid inputs:
<specific database name>
MinionDefault

RestoreType varchar Restore type.

Valid inputs:
Full
Diff
Log
All

SpaceType varchar The way in Minion Backup determines the size
of the database (e.g., data only, data and index,
etc.)

Valid inputs:

22

DataAndIndex
Data
File

ThresholdMeasure char The measure for our threshold value.

Valid inputs:
GB

ThresholdValue bigint The correlating value to ThresholdMeasure. So,
if ThresholdMeasure is GB, then
ThresholdValue is the value – the number of
gigabytes.

Buffercount smallint From MSDN.Microsoft.com: “Specifies the
total number of I/O buffers to be used for the
backup operation. You can specify any positive
integer; however, large numbers of buffers
might cause "out of memory" errors because of
inadequate virtual address space in the
Sqlservr.exe process.”

MaxTransferSize bigint Max transfer size, as specified in bytes. This
must be a multiple of 64KB.

Note that a value of 0 will allow Minion Backup
to use the SQL Server default value, typically
1MB.

From MSDN.Microsoft.com: “Specifies the
largest unit of transfer in bytes to be used
between SQL Server and the backup media. The
possible values are multiples of 65536 bytes (64
KB) ranging up to 4194304 bytes (4 MB).”

BlockSize bigint From MSDN.Microsoft.com: “Specifies the
physical block size, in bytes. The supported
sizes are 512, 1024, 2048, 4096, 8192, 16384,
32768, and 65536 (64 KB) bytes. The default is
65536 for tape devices and 512 otherwise.
Typically, this option is unnecessary because
BACKUP automatically selects a block size that
is appropriate to the device. Explicitly stating a
block size overrides the automatic selection of
block size.”

Replace bit Whether to enable the WITH REPLACE restore
option.

WithFlags varchar Additional WITH flags. You can use any of the
standard RESTORE statement WITH options,
using a comma-delimited list. Note that log
backup restores are automatically restored with
NORECOVERY.

Example:
NORECOVERY

http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx

23

BeginTime varchar The start time at which this threshold applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime varchar The end time at which this threshold applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

DayOfWeek varchar The day or days to which the settings apply.

Valid inputs:
Weekday
Weekend
[an individual day, e.g., Sunday]

IsActive bit Whether the current row is valid (active), and
should be used in the Minion Backup process.

Comment varchar For your reference only. You can label each row
with a short description and/or purpose.

Minion.BackupSettings
Minion.BackupSettings contains the essential backup settings, including backup order, history retention, pre-

and postcode, native backup settings (like format), and more.

Minion.BackupSettings is installed with default settings already in place, via the system-wide default row

(identified by DBName = “MinionDefault” and BackupType = “All”). If you do not need to fine tune your

backups at all, no action is required, and all backups will use this default configuration.

Important: Do not delete the MinionDefault row, or alter the DBName or BackupType columns for this row!

To override these default settings for a specific database, insert a new row for the individual database with

the desired settings. Note that any database with its own entry in Minion.BackupSettings retrieves ALL its

configuration data from that row. For example, if you enter a row for [YourDatabase] and leave the

ShrinkLogOnLogBackup column at NULL, Minion Backup does NOT retrieve that value from the

“MinionDefault” row; in this case, ShrinkLogOnLogBackup for YourDatabase would default to off (“no”).

Name Type Description
ID int Primary key row identifier.

DBName sysname Database name.

24

Port Int Port number for the instance. If this is NULL,
we assume the port number is 1433.

Minion Backup includes the port number
because certain operations that are shelled out
to sqlcmd require it.

BackupType Varchar Backup type.

Valid inputs:
All
Full
Diff
Log

Note that “All” encompasses full, differential,
and log backups.

Exclude Bit Exclude database from backups.

For more on this topic, see “How To: Exclude
databases from backups”.

GroupOrder Int The backup order within a group. Used solely
for determining the order in which databases
should be backed up.

By default, all databases have a value of 0,
which means they’ll be processed in the order
they’re queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be backed up
earlier than lower numbers. We recommend
leaving some space between assigned back up
order numbers (e.g., 10, 20, 30) so there is
room to move or insert rows in the ordering.

For more information, see “How To: Backup

databases in a specific order”.
GroupDBOrder int Group to which this database belongs. Used

solely for determining the order in which
databases should be backed up.

By default, all databases have a value of 0,
which means they’ll be processed in the order
they’re queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be backed up
earlier than lower numbers. The range of
GroupDBOrder weight numbers is 0-255.

25

For more information, see “How To: Backup

databases in a specific order”.
Mirror Bit Back up to a secondary mirror location.

Note: This option is only available in SQL Server
Enterprise edition.

DelFileBefore bit Delete the backup file before taking the new
backup.

DelFileBeforeAgree bit Signifies that you know deleting the backup file
first is a bad idea (because it leaves you without
a backup, should your current backup fail), but
that you agree anyway.

LogLoc varchar Determines whether log data is only stored on
the local (client) server, or on both the local
server and the central Minion (repository)
server.

Valid inputs:
Local
Repo

HistRetDays smallint Number of days to retain a history of backups
(in Minion Backup log tables).

Minion Backup does not modify or delete
backup information from the MSDB database.

Note: This setting is also optionally configurable
at the backup level, and also at the BackupType
level. So, you can keep log history for different
amounts of time for log backups than you do
for full backups.

MinionTriggerPath varchar UNC path where the Minion logging trigger file
is located.

Not applicable for a standalone Minion Backup
instance.

DBPreCode Nvarchar Code to run for a database, before the backup
operation begins for that database.

For more on this topic, see “How To: Run code
before or after backups”.

DBPostCode nvarchar Code to run for a database, after the backup
operation completes for that database.

For more on this topic, see “How To: Run code
before or after backups”.

PushToMinion Bit Save these values to the central Minion server,
if it exists. Modifies values for this particular
database on the central Minion server.

26

A value of NULL indicates that this feature is
off. Functionality not yet supported.

DynamicTuning bit Enables dynamic tuning.

For more on dynamic tuning, see “How to: Set
up dynamic backup tuning thresholds”.

Verify Varchar Specifies when the RESTORE VERIFYONLY
operation is to happen.

Warning: Just as with the FileActionTime
column, this setting must be used with caution.
Verifying backups can take a long time, and you
could hold up subsequent backups while
running the verify. We recommend using
AfterBatch.

(Note that the FileAction operation is processed
before the Verify operation.)

Valid inputs:
NULL (meaning do not run verify)
AfterBackup
AfterBatch

See http://msdn.microsoft.com/en-
us/library/ms188902.aspx

PreferredServer Varchar The server on which you would like to perform
backups in an Availability Group.

A NULL in this field defaults to the current AG
primary (if in an AG scenario). This field is
ignored for databases not in an AG scenario.

Valid inputs:
NULL
AGPreferred
<specific server or server\instance name>

For more on this topic, see “How to: Set up
backups on Availability Groups”.

ShrinkLogOnLogBackup Bit Turn on log shrink after log backups.

For more on this topic, see “How to: Shrink log
files after backup”.

ShrinkLogThresholdInMB int How big (in MB) the log file is before Minion
Backup will shrink it. For example, if a log file is
1% full, but the file is only 1 GB, we probably
don’t want to shrink it.

http://msdn.microsoft.com/en-us/library/ms188902.aspx
http://msdn.microsoft.com/en-us/library/ms188902.aspx

27

Note that you could force a shrink after every
log backup by setting this to 0, but we don’t
advise it.

For more on this topic, see “How to: Shrink log
files after backup”.

ShrinkLogSizeInMB int The size (in MB) the log file shrink should
target. In other words, how big you would like
the log file to be after a file shrink.

This setting applies for EACH log file, not for all
log files totaled. If you specify 1024 as the size
here, and you have three log files for your
database, Minion Backup will attempt to shrink
each of the three log files down to 1024MB (so
you’ll end up with at least 3072MB of logs).

For more on this topic, see “How to: Shrink log
files after backup”.

MinSizeForDiffInGB bigint The minimum size of a database (in GB) in
order to perform differentials; databases under
this size will not get differential backups.

A value of NULL or 0 means that there is no
restriction on whether to take differential
backups.

DiffReplaceAction varchar If a database does not meet the
MinSizeForDiffInGB limit, perform another
action instead of a differential backup (e.g.,
perform a log backup instead).

While Minion Backup allows you to perform a
full backup in lieu of a differential, understand
that this could increase the expected time of
the backup jobs.

A NULL value means the same as “Skip”.

Valid inputs:
Full
Log
Skip
NULL

LogProgress bit Track the progress of backup operations for this
database.

Status is tracked in the Minion.BackupLog table.

FileAction varchar Move or copy the backup file.

28

A value of NULL means this setting has no move
or copy operations.
If COPY or MOVE is specified, at least one
corresponding COPY entry (or a single
corresponding MOVE entry, as appropriate) is
required in the Minion.BackupSettingsPath
table, to determine the path to copy or move
to. IMPORTANT: If there is no corresponding
COPY or MOVE entry, this setting will generate
no error; there will just be no copy.

Valid inputs:
NULL
COPY
MOVE
CopyMove

For more on this topic, see “About: Copy and
move backup files”.

FileActionTime Varchar The time at which to perform the COPY or
MOVE FileAction.

Valid inputs:

AfterBackup
AfterBatch

For more on this topic, see “About: Copy and
move backup files”.

Encrypt bit Encrypt the backup.

Name varchar The name of the backup set.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

ExpireDateInHrs int Number of hours until the backup set for this

backup can be overwritten.

If both ExpireDateInHrs and RetainDays are

both used, RetainDays takes precedence.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

RetainDays smallint The number of days that must elapse before

this backup media set can be overwritten.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

Descr varchar Description of the backup set. Note: this must

be no more than 255 characters.

http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx

29

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

Checksum bit Verify each page for checksum and torn page (if
enabled and available) and generate a
checksum for the entire backup.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

Init bit Overwrite the existing backup set.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

Format bit Overwrite the existing media header. Note

that Format=1 is equivalent to Format=1 AND

Init=1; therefore, FORMAT=1 will override the

Init setting.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

CopyOnly bit Perform a copy-only backup. Copy only

backups do not affect the normal sequence of

backups.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

Skip bit Skip the check of the backup set’s expiration

before overwriting.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

BackupErrorMgmt varchar Rollup of the two BACKUP flags –
STOP_ON_ERROR and
CONTINUE_AFTER_ERROR.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

MediaName varchar The backup set’s media name.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

MediaDescription varchar Description of the media set. Note: this must

be no more than 255 characters.

See http://msdn.microsoft.com/en-
us/library/ms186865.aspx

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx

30

Comment Varchar For your reference only. You can label each row
with a short description and/or purpose.

Discussion:

The Minion.BackupSettings table comes with a row with “MinionDefault” as the DBName value, and

“All” as the BackupType. This row defines the system-wide defaults.

Important: Any row inserted for an individual database overrides only ALL of the values, whether or

not they are specified. Refer to the following for an example:

ID DBName BackupType Exclude … DBPreCode

1 MinionDefault All 0 … EXEC specialCode;

2 YourDatabase Full 0 … NULL

The first row, “MinionDefault”, is the set of default values to use for all the databases in the SQL

Server instance. These values will be used for backup for all databases that do not have an

additional row in this table.

The second row, [YourDatabase], specifies some values for YourDatabase. This row completely

overrides the “DefaultMinion” values for Full backups on YourDatabase.

When full backups are performed for YourDatabase, only the values from the YourDatabase/Full row

will be used. So, even though the system-wide default (as specified in the MinionDefault row) for

DBPreCode is ‘EXEC specialCode;’, Full backups on YourDatabase will NOT use that default value.

Because DBPreCode is NULL for YourDatabase/Full, Full backups will perform no pre code for

YourDatabase.

For more information, see the “Configuration Settings Hierarchy” section in “Architecture Overview”.

Example: Set custom configuration for Full backups on database ‘YourDatabase’.

INSERT INTO [Minion].[BackupSettings]
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [LogLoc] ,
 [HistRetDays] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB] ,
 [Name] ,

31

 [ExpireDateInHrs] ,
 [RetainDays] ,
 [Descr] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [MediaName] ,
 [MediaDescription]
)
SELECT 'YourDatabase' AS [DBName] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [ShrinkLogOnLogBackup] ,
 1 AS [ShrinkLogThresholdInMB] ,
 1024 AS [ShrinkLogSizeInMB] ,
 'Backup name' AS [Name] ,
 5 AS [ExpireDateInHrs] ,
 2 AS [RetainDays] ,
 'backup desc' AS [Descr] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 'MediaName' AS [MediaName] ,
 'MediaDesc' AS [MediaDescription];

Minion.BackupSettingsPath
This table allows you to configure backup path destinations; and backup file copy and move settings. You may

insert rows for individual databases, backup types, and copy/move settings, to override the default path

settings for that database and backup type.

IMPORTANT: We highly recommend backing up to UNC paths, instead of to locally defined drives. Especially

in the context of the Data Waiter feature, UNC paths allow a smoother transition between replicas or to a

warm failover server. For more information, see “About: Synchronizing settings and log data with the Data

Waiter”.

Several “How To” sections provide instructions for copy, move, and mirror scenarios that use the

Minion.BackupSettingsPath table:

 How to: Set up mirror backups

 How to: Copy files after backup (single and multiple locations)

 How to: Move files to a location after backup

 How to: Copy and move backup files

 How to: Back up to multiple files in a single location

32

 How to: Back up to multiple locations

Also see the discussion below, after the columns description.

Name Type Description
ID Int Primary key row identifier.

DBName sysname Database name.
isMirror bit Is a backup mirror location.

BackupType Varchar Backup type.

Valid inputs:
ALL
Full
Diff
Log
ServerCert
DatabaseCert
Move
Copy

Note that ALL encompasses full, differential,
and log backups.

BackupLocType varchar Backup location type.

Example values:
Local
NAS
URL

Note: URL and NUL are the most important of
these, and are used by the Minion Backup
process. The remaining input(s) are user
defined, as they’re just information for you.

However, once combined with Minion
Enterprise, these are all important for
reporting.

BackupDrive Varchar Backup drive. This is only the drive letter of the
backup destination.

Alternately, this value can be NUL if
BackupLocType is NUL.

IMPORTANT: If this is drive, this must end with
colon-slash (for example, ‘M:\’). If this is URL,
use the base path (for example, ‘\\server2\’)

BackupPath varchar Backup path. This is only the path (for example,
‘SQLBackups\’) of the backup destination.

33

Alternately, this value can be NUL if
BackupLocType is NUL.

FileName varchar The name of the file, without the extension.

FileExtension varchar The file extension, with the period. For
example: “.bak”.

Both NULL AND ‘MinionDefault’ will cause MB
to use the default extension as appropriate: for
backup files, ‘.bak’ or ‘.trn’, and for certificate
backups, ‘.cer’ and ‘.pvk’.

This field accepts Inline Tokens.

Examples:
NULL
MinionDefault
.bak
%BackupTypeExtension%

ServerLabel Varchar A user-customized label for the server name. It
can be the name of the server, server\instance,
or a label for a server.

This is used for the backup file path.

This comes in handy especially in Availability
groups; if on day 1 we are on AG node 1, and on
day 2 we are on AG node 2, we don’t want the
backups to save to different physical locations
based on that name change. We instead
provide a label for all databases on the instance
– whether or not they’re in an AG – so backups
will all be in a central place (and so that
cleaning up old backups is not an onerous
chore).

As this is just a label meant to group backup
files, you could conceivably use it any which
way you like; for example, one label for AG
databases, and another for non-AG, etc.

Cannot contain a dynamic part.

RetHrs int Number of hours to retain the backup files.

FileActionMethod Used to specify the program to use to perform
the COPY/MOVE actions.

Note: NULL and COPY are the same. And while
the setting is called COPY, it uses PowerShell
COPY or MOVE commands as needed.

34

Valid inputs:
NULL (same as COPY)
COPY
MOVE
XCOPY
ROBOCOPY
ESEUTIL

Note that ESEUTIL requires additional setup.
For more on this topic, see “How to Topics:
Backup Mirrors and File Actions” and “About:
Copy and move backup files”.

FileActionMethodFlags Used to supply flags for the method specified in
FileActionMethod. The flags will be appended
to the end of the command; this is the perfect
way to provide specific functionality like
preserving security, attributes, etc.

For more on this topic, see “How to Topics:
Backup Mirrors and File Actions” and “About:
Copy and move backup files”.

PathOrder Int If a backup goes to multiple drives, or is copied
to multiple drives, then PathOrder is used to
determine the order in which the different
drives are used.

IMPORTANT: Like all ranking fields in Minion,
PathOrder is a weighted measure. Higher
numbers have a greater “weight” - they have a
higher priority - and will be used earlier than
lower numbers.

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

AzureCredential Varchar The name of the credential used to back up to a
Microsoft Azure Blob.

When you take a backup to a Microsoft Azure
Blob (with TO URL=’…’), you must set up a
credential under security so you can access that
blob. You have to pass that into the backup
statement (WITH CREDNTIAL=’…’).

See https://msdn.microsoft.com/en-
us/jj720558

Comment Varchar For your reference only. You can label each row
with a short description and/or purpose.

Discussion:

file:///C:/Users/jen.MIDNIGHT/AppData/Roaming/Microsoft/Word/How_To
file:///C:/Users/jen.MIDNIGHT/AppData/Roaming/Microsoft/Word/How_To
file:///C:/Users/jen.MIDNIGHT/AppData/Roaming/Microsoft/Word/How_To
file:///C:/Users/jen.MIDNIGHT/AppData/Roaming/Microsoft/Word/How_To
https://msdn.microsoft.com/en-us/jj720558
https://msdn.microsoft.com/en-us/jj720558

35

The Minion.BackupSettingsPath table comes with one default row: DBName=’MinionDefault’ and

isMirror=0. If all of your backups are going to same location, you only need to update this row with

your backup location.

You can also insert additional rows to configure the backup file target for an individual database, to

override the default backup settings for that database.

You can also insert a row with BackupType=’MOVE’, to move a backup file after the backup

operations are complete; and/or one or more rows with BackupType=’COPY’ to copy a backup file.

Both MOVE and COPY operations are performed at a time designated by the FileActionTime field in

the Minion.BackupSettings table. For example, if FileActionTime is set to ‘AfterBackup’, then a MOVE

or COPY specified here in Minion.BackupSettingsPath will happen immediately after that backup

(instead of at the end of the entire backup operation).

To backup a server certificate or database certificate, you must insert a row with BackupType =

‘ServerCert’. Server certificate backups don’t make use of the DBName field, so you can set it to

‘MinionDefault’, to signify that it applies universally. To backup a database certificate, you must

insert an individual row for each –– either DBName = ‘MinionDefault’ and BackupType =

‘DatabaseCert’, or BackupType=’DatabaseCert’ for a specific database.

Minion Backup will not back up certificates without an explicit BackupType=’ServerCert’ /

‘DatabaseCert’ row(s). You can have multiple certificate backup path rows for the same database (or

for the server) going to multiple locations, all with isActive = 1. This is because certificates are so

important to the restoration of a database, that Minion Backup allows you to back up the certificates

to multiple locations. If you have five rows for DB2 database certificate backups, and all are set to

isActive = 1, then all five of them are valid and will be executed. For more information, see the “How

to: Configure certificate backups” section.

Minion.BackupSettingsServer
This table contains server-level backup settings. Specifically, each row represents a backup scenario as

defined by the database type, backup type, day, begin and end time, and maximum number of backups per

timeframe. The backup job (MinionBackup-AUTO) runs regularly in conjunction with this table to provide a

wide range of backup options, all without introducing additional jobs.

In addition, you can enable settings synchronization, and/or log synchronization, for any or all of the backup

scenarios. (So for example, Minion Backup can synchronize settings and logs with the weekly full backups.)

For more information, see the “About: Backup Schedules” section.

Minion.BackupSettingsServer ships with a full set of schedules in place.

Name Type Description
ID Int Primary key row identifier.

DBType varchar Database type.

36

Valid values:
User
System

BackupType varchar Backup type.

Valid inputs:
Full
Diff
Log

Day Varchar The day or days to which the settings apply.

Valid inputs:
Daily
Weekday
Weekend
[an individual day, e.g., Sunday]
FirstOfMonth
LastOfMonth
FirstOfYear
LastOfYear

Note: Note that the least frequent “Day”
settings – FirstOfYear, LastOfYear,
FirstOfMonth, LastOfMonth – only apply to
user databases, not to system databases.

ReadOnly tinyint Backup readonly option; this decides whether
or not to include ReadOnly databases in the
backup, or to perform backups on only
ReadOnly databases.

A value of 1 includes ReadOnly databases; 2
excludes ReadOnly databases; and 3 only
includes ReadOnly databases.

Valid values:
1
2
3

BeginTime varchar The start time at which this schedule applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime varchar The end time at which this schedule applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is

37

milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

MaxForTimeframe int Maximum number of iterations within the
specified timeframe (BeginTime to EndTime).

For more information, see “Table based
scheduling” in the “Quick Start” section.

FrequencyMins int The frequency (in minutes) that the backup
should occur.

Note that actual frequency also depends on
the SQL Agent job schedule. If FrequencyMins
= 5, but the job runs every 15 minutes, you will
only get this backup every 15 minutes.

However, if FrequencyMins = 30 and the job
runs every 10 minutes, this backup will occur
every 30 minutes.

CurrentNumBackups int Count of backup attempts for the particular
DBType, BackupType, and Day, for the current
timeframe (BeginTime to EndTime)

NumConcurrentBackups tinyint For future use.

LastRunDateTime datetime The last time a backup ran that applied to this
particular scenario (DBType, BackupType, Day,
and timeframe).

Include varchar The value to pass into the @Include parameter
of the Minion.BackupMaster job; in other
words, the databases to include in this
attempt. This may be left NULL (meaning “all
databases”).

Exclude varchar The value to pass into the @Exclude
parameter of the Minion.BackupMaster job; in
other words, the databases to exclude from
this attempt. This may be left NULL (meaning
“no exclusions”).

SyncSettings bit Whether or not to perform a synchronization
of settings tables during this particular run.

For more information, see “How to:
Synchronize backup settings and logs among
instances”.

SyncLogs bit Whether or not to perform a synchronization
of log tables during this particular run.

For more information, see “How to:
Synchronize backup settings and logs among
instances”.

38

BatchPreCode varchar Precode to run before the entire backup
operation.

BatchPostCode varchar Precode to run after the entire backup
operation.

Debug bit Enable logging of special data to the debug
tables.

For more information, see
“Minion.BackupDebug” and
“Minion.BackupDebugLogDetails”.

FailJobOnError bit Cause the job to fail if an error is encountered.
If an error is encountered, the rest of the
batch will complete before the job is marked
failed.

FailJobOnWarning bit Cause the job to fail if a warning is
encountered. If a warning is encountered, the
rest of the batch will complete before the job
is marked failed.

IsActive Bit Whether the current row is valid (active), and
should be used in the Minion Backup process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Example 1: Weekly full, daily differential, hourly log backups

We could use this table to define the following backup time scenarios:

 Full system backups on Sunday, one time between 6pm and 7pm.

 Full user backups on Sunday, one time between 8pm and 9pm.

 Differential backups on every other day (Monday-Saturday), one time each between 8pm and 9pm.

 Log backups hourly (except when differential or full backups are running).

To do this, we would set the MinionBackup-AUTO backup job to run once hourly, and define the following

rows. (Note that some of the table columns are omitted, for presentation purposes.)

ID DBType BackupType Day ReadOnly BeginTime EndTime MaxForTimeframe
5 System Full Sunday 1 18:00:00 19:00:00 1

6 User Full Sunday 1 20:00:00 21:00:00 1
7 User Diff Weekday 1 20:00:00 21:00:00 1

8 User Diff Saturday 1 20:00:00 21:00:00 1

9 User Log Sunday 1 00:00:00 23:59:59 24

We do not have to specifically time the log backups to avoid the 8pm differential and full backup windows;

because both differential and full backups take precedence over log backups. So when the 8pm job begins, it

will see the differential or full backup slated, and discard the log backup for that hour. In other words, the job

run history would look like this:

39

 Sunday 7pm – user log backup, system full backup

 Sunday 8pm – user full backup

 Sunday 9pm – user log backup

 Continuing hourly log backups…

 Monday 7pm – user log backup

 Monday 8pm – user diff backups

 Etc…

Example 2: Daily full, differential every 4 hours, log backups every 15 minutes

We could use this table to define the following backup time scenarios:

 Full system backups daily, one time between 9pm and 9:30pm.

 Full user backups daily, one time between 10pm and 10:30pm.

 Differential backups every 4 hours (except when full backups are running), starting at 2:00am.

 Log backups every 15 minutes (except when differential or full backups are running).

To do this, we would set the MinionBackup-AUTO backup job to run every 15 minutes, and define the

following rows. (Note that some of the table columns are omitted, for presentation purposes.)

ID DBType BackupType Day ReadOnly BeginTime EndTime MaxForTimeframe
5 System Full Daily 1 21:00:00 21:30:00 1

6 User Full Daily 1 22:00:00 22:30:00 1

7 User Diff Daily 1 02:00:00 02:30:00 1
8 User Diff Daily 1 06:00:00 06:30:00 1

9 User Diff Daily 1 10:00:00 10:30:00 1
10 User Diff Daily 1 14:00:00 14:30:00 1

11 User Diff Daily 1 18:00:00 18:30:00 1

12 User Log Daily 1 00:00:00 23:59:59 96

In short, we need one row each for:

 full daily system backups

 full daily user backups

 full log backups (these run every 15 minutes)

And additionally, one row per each differential backup timeframe (2am, 6am, 10am, 2pm, and 6pm). We

don’t take a differential at 10pm, of course, because that is when the full backup will run.

Note: The 10pm user log backups will be replaced by the 10pm user full backups.

Minion.BackupTuningThresholds
This table holds the thresholds used to determine the tuning of a backup.

40

For more information, see the sections “About: Dynamic Backup Tuning Thresholds” and “How to: Set up

dynamic backup tuning thresholds”.

Name Type Description
ID Int Primary key row identifier.

DBName sysname Database name.
BackupType Varchar Backup type.

Valid inputs:
ALL
Full
Diff
Log

Note that ALL encompasses full, differential,
and log backups.

SpaceType varchar The way in Minion Backup determines the size
of the database (e.g., data only, data and index,
etc.)

Note that this column is ignored for log
backups, but you should put “Log” here anyway
for rows where BackupType=Log, because it’s
descriptive.

Valid inputs:
DataAndIndex
Data
File
Log

ThresholdMeasure Char The measure for our threshold value.

Valid inputs:
GB

ThresholdValue Bigint The correlating value to ThresholdMeasure. So.
if ThresholdMeasure is GB, then
ThresholdValue is the value – the number of
gigabytes.

NumberOfFiles tinyint The number of files to use for the backup.

Buffercount Smallint From MSDN.Microsoft.com: “Specifies the
total number of I/O buffers to be used for the
backup operation. You can specify any positive
integer; however, large numbers of buffers
might cause "out of memory" errors because of
inadequate virtual address space in the
Sqlservr.exe process.”

MaxTransferSize bigint Max transfer size, as specified in bytes. This
must be a multiple of 64KB.

http://msdn.microsoft.com/en-us/library/ms186865.aspx

41

Note that a value of 0 will allow Minion Backup
to use the SQL Server default value, typically
1MB.

From MSDN.Microsoft.com: “Specifies the
largest unit of transfer in bytes to be used
between SQL Server and the backup media. The
possible values are multiples of 65536 bytes (64
KB) ranging up to 4194304 bytes (4 MB).”

Compression bit From MSDN.Microsoft.com: “In SQL Server
2008 Enterprise and later versions only,

specifies whether backup compression is
performed on this backup, overriding the
server-level default.”

BlockSize bigint From MSDN.Microsoft.com: “Specifies the
physical block size, in bytes. The supported
sizes are 512, 1024, 2048, 4096, 8192, 16384,
32768, and 65536 (64 KB) bytes. The default is
65536 for tape devices and 512 otherwise.
Typically, this option is unnecessary because
BACKUP automatically selects a block size that
is appropriate to the device. Explicitly stating a
block size overrides the automatic selection of
block size.”

BeginTime varchar The start time at which this threshold applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime Varchar The end time at which this threshold applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

DayOfWeek Varchar The day or days to which the settings apply.

Valid inputs:
Weekday
Weekend
[an individual day, e.g., Sunday]

IsActive Bit Whether the current row is valid (active), and
should be used in the Minion Backup process.

http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx
http://msdn.microsoft.com/en-us/library/bb964719.aspx
http://msdn.microsoft.com/en-us/library/ms186865.aspx

42

Comment Varchar For your reference only. You can label each row
with a short description and/or purpose.

Minion.DBMaintDBGroups
Allows you to create named groups of databases to include or exclude from backups (or all maintenance),

using database names and/or wildcard strings.

Note that this table is shared between Minion modules.

Name Type Description
ID Int Primary key row identifier.

Action varchar The action that this group applies to.
Databases can be a part of a named “Include”
group, or a named “Exclude” group.

For more information, see the example below.

Valid values:
Include
Exclude

MaintType varchar The type of maintenance that this row applies
to.

Valid values:
All
Backup
Reindex
CheckDB

GroupName Varchar The name of the group. This is the identifier to
be used in the @Include or @Exclude
statement.

GroupDef varchar The database name, or wildcard string, to be
included as part of this group.

Escape char The character used to “escape” a normally
meaningful character.

For example, if your database is actually
named [My%DB], you can define an escape
character (like |) to make the system
recognize % as a character, not a wildcard. So,
your database name would be entered as
My|%DB, Escape=’|’.

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

43

Example 1:

Let’s create a group named XYZ with Action=Include, and databases ‘DB1,DB2,DB3’; and, Action=Exclude,

with databases ‘DB1,DB2’.

ID Action MaintType GroupName GroupDef Escape IsActive Comment
1 Include Backup XYZ DB1 NULL 1 XYZ: DB1

2 Include Backup XYZ DB2 NULL 1 XYZ: DB2

3 Include Backup XYZ DB3 NULL 1 XYZ: DB3
4 Exclude Backup XYZ DB1 NULL 1 XYZ: DB1

5 Exclude Backup XYZ DB2 NULL 1 XYZ: DB2

Then, a run of Minion.BackupMaster with @Include=’DBGROUP:XYZ’ would include only databases DB1, DB2,

and DB3. And if you run Minion.BackupMaster with @Exclude=’DBGROUP:XYZ’, it would only exclue

databases DB1, and DB2.

Note that in many cases, the list of databases for Include and the one for Exclude will be the same. Just know

that they don’t HAVE to be; you can include 3 databases, and exclude 4, or whatever you need.

Example 2:

Let’s create a more complicated group, with a like expression and a DB name for Include (and the same for

Exclude).

ID Action MaintType GroupName GroupDef Escape IsActive Comment
1 Include Backup MBRY DB% NULL 1 All DB%

databases.

2 Include Backup MBRY Minion NULL 1 Minion
database.

3 Exclude Backup MBRY DB% NULL 1 All DB%
databases.

4 Exclude Backup MBRY Minion NULL 1 Minion
database.

Now when we run Minion.BackupMaster with @Include=’DBGROUP:MBRY’, the Minion database and all of

the DB% databases will be included in the backup.

And of course, running Minion.BackupMaster with @Exclude=’DBGROUP:MBRY’ will run backups for

everything except the Minion database and all of the DB% databases.

Minion.DBMaintInlineTokens
Minion CheckDB 1.0 and MinionBackup 1.3 introduce a new feature to the Minion suite – Inline Tokens.

Inline Tokens allow you use defined patterns to create dynamic names and paths. For example, MB comes

with the predefined Inline Token “Server” and “DBName”. To create a dynamic backup path for all backups,

we update the path table:

44

 UPDATE Minion.BackupSettingsPath
 SET BackupPath = 'SQLBackups\%Server%\%DBName%\';

MB recognizes %Server% and %DBName% as Inline Tokens, and refers to the Minion.DBMaintInlineTokens

table for the definition. Note that custom tokens must be used with pipe delimiters, instead of percent signs:

‘|MyCustomToken|’.

For more information, see “About: Inline Tokens”.

Note that this table is shared between Minion modules.

Name Type Description

ID Int Primary key row identifier.
DynamicName varchar The name of the dynamic part, e.g., “Date”.

We recommend you do not include any special
symbols – only alphanumeric characters.

ParseMethod varchar The definition of the dynamic part.

Typically, this is a TSQL expression that
resolves to the value desired. For example, the
ParseMethod for “Millisecond” is

DATEPART(MILLISECOND,
@ExecutionDateTime)

IsCustom bit Whether this is a custom dynamic part, or one
that came with the product originally.

Definition varchar This is the official description of the dynamic
part.

Example (BackupTypeExtension): “Returns a
dynamic backup file extension based on the
backup type.”

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Minion.DBMaintRegexLookup
Allows you to exclude databases from index maintenance (or all maintenance), based off of regular

expressions.

Note that this table is shared between Minion modules.

Name Type Description

Action varchar Action to perform with this regular expression.

45

Valid inputs:
INCLUDE
EXCLUDE

MaintType varchar Maintenance type to which this applies.

Valid inputs:
All
Reindex
Backup
CheckDB

Regex nvarchar Regular expression to match a database name,
or set of database names.

Comments varchar For your reference only. You can label each
row with a short description and/or purpose.

Discussion:

Note that you can create more than one regular expression in Minion.DBMaintRegexLookup. For example:

 To use Regex to include only DB3, DB4, and DB5: insert a row like the example above, where Regex =

’DB[3-5](?!\d)’.

 To use Regex to include any database beginning with the word “Market” followed by a number: insert

a row where Regex=’Market[0-9]’.

 With these two rows, a backup operation with @Include=’Regex’ will backup both the DB3-DB5

databases, and the databases Marketing4 and Marketing308 (and similar others, if they exist).

For more information, see “How To: Include databases in backups” and “How To: Exclude databases from

backups”.

Minion.SyncServer
Configure the synchronization server information per database here in Minion.SyncServer.

For more information, see the sections “How to: Synchronize backup settings and logs among instances”,

“Minion.SyncCmds”, and “Minion.SyncErrorCmds”.

Name Type Description
ID int Primary key row identifier.

Module varchar The name of the module to retrieve help for.

Valid inputs include:
Reindex
Backup
CheckDB

DBName sysname Database type.

Valid values:

46

User
System

SyncServerName varchar Name of the target server, or of the target
category, where you want to ship the table
entries to.

 Use “AGReplica” if the database is in an
Availability Group. Minion Backup will
automatically ship to all the replicas for
that AG.

 Use “MirrorPartner” if the databases is
mirrored, and you want to sync to the
mirroring partner.

 Use “LogShippingPartner” in a log shipping
scenario.

 Or use the specific server name.

If you have either a server that isn’t one of
those three, OR an AG replica where you only
want to send to 1 or 2 replicas, you can enter
in server names manually.

Single server: “servername\instancename”,
e.g. “Server1”, “Server2\SQL”.
If you have multiple servers, you don’t need
multiple rows; just use pipes:
“Server1|Server2\SQL|Server3”. One example
of where this would be useful: if you routinely
do restores to a development server from a
production server, you can sync the logs from
the production server to the development
server.

SyncDBName sysname Your management database, where the
Minion objects reside. (This is either ‘master’,
or your custom management database.)

Port int The port to be used for the connection to the
target SQL Server.

ConnectionTimeoutInSecs Int …It’s in the name.

Log Tables Detail

Minion.BackupFileListOnly
This table is no longer in use, and was removed as of Minion Backup 1.3

47

Minion.BackupFiles
A log of all backup files (whether they originate from a backup, a copy, or a move). A backup that is striped to

10 files will have 10 rows in this table. A backup that has one file, but is then copied to one other location,

will have two rows in this table.

Note: With dynamic backup tuning, a backup could have 3 files one day, 10 files the next, 5 the next, and so

on.

Many of the fields in this table are taken directly from BACKUP HEADERONLY. Refer to the BACKUP

HEADERONLY article on MSDN: https://msdn.microsoft.com/en-us/library/ms178536.aspx

Name Type Description

ID bigint Primary key row identifier.
ExecutionDateTime Datetime Date and time the entire backup operation took

place.

Op varchar The operation that was performed. For example:
Backup, Copy, or Move.

Status varchar Current status of the file operation.

DBName sysname Database name.

ServerLabel varchar The user-customized label for the server name.

For more information, see the ServerLabel column
in Minion.BackupSettingsPath.

NETBIOSName varchar NetBIOS name.

BackupType varchar Specifies full, log, or differential backups.

Example values:
Full
Log
Diff
Private Key
Certificate

BackupLocType Varchar Backup location type.

Example values:
Local
NAS
URL

Note: URL and NUL are the most important of
these, and are used by the Minion Backup process.
The remaining input(s) are user defined, as they’re
just information for you.

BackupDrive varchar Backup drive. This is only the drive letter of the
backup destination.

https://msdn.microsoft.com/en-us/library/ms178536.aspx

48

IMPORTANT: If this is drive, this must end with
colon-slash (for example, ‘M:\’). If this is URL, use
the base path (for example, ‘\\server2\’)

BackupPath varchar Backup path. This is only the path (for example,
‘SQLBackups\’) of the backup destination.

FullPath varchar The full path without filename. For example:
“C:\SQLBackups\Server1\DB1”.

FullFileName varchar The full path (drive, path, and file name) of the
backup file. For example:
“C:\SQLBackups\Server1\DB1\
1of1LogDB120150514085245.TRN”

FileName varchar Base file name, without extension. For example,
“1of1LogDB120150514085245”.

DateLogic varchar The date and time, in YYYYMMDDHHMMSS
format. For example, 20150514085245. This is
used in generating the backup filename.

Extension varchar The file extension. For example, “.TRN”.
RetHrs int Number of hours to retain the backup files.

IsMirror bit Is a backup mirror location.

ToBeDeleted datetime Date that the file is set to be deleted.
DeleteDateTime datetime Date that the file was deleted.

IsDeleted bit Whether the file has been deleted.
IsArchive bit Whether the file is marked as “Archived”, which

protects the file from being deleted at any time.

BackupSizeInMB numeric The size of the entire backup, in MB.

BackupName varchar See the MSDN article “RESTORE HEADERONLY”.
BackupDescription varchar See the MSDN article “RESTORE HEADERONLY”.

ExpirationDate datetime See the MSDN article “RESTORE HEADERONLY”.
Compressed bit See the MSDN article “RESTORE HEADERONLY”.

POSITION tinyint See the MSDN article “RESTORE HEADERONLY”.

DeviceType tinyint See the MSDN article “RESTORE HEADERONLY”.
UserName varchar See the MSDN article “RESTORE HEADERONLY”.

DatabaseName Sysname See the MSDN article “RESTORE HEADERONLY”.
DatabaseVersion int See the MSDN article “RESTORE HEADERONLY”.

DatabaseCreationDate datetime See the MSDN article “RESTORE HEADERONLY”.

BackupSizeInBytes bigint See the MSDN article “RESTORE HEADERONLY”.
FirstLSN varchar See the MSDN article “RESTORE HEADERONLY”.

LastLSN varchar See the MSDN article “RESTORE HEADERONLY”.
CheckpointLSN varchar See the MSDN article “RESTORE HEADERONLY”.

DatabaseBackupLSN varchar See the MSDN article “RESTORE HEADERONLY”.
BackupStartDate datetime See the MSDN article “RESTORE HEADERONLY”.

BackupFinishDate datetime See the MSDN article “RESTORE HEADERONLY”.

SortOrder int See the MSDN article “RESTORE HEADERONLY”.
CODEPAGE int See the MSDN article “RESTORE HEADERONLY”.

UnicodeLocaleId int See the MSDN article “RESTORE HEADERONLY”.
UnicodeComparisonStyle int See the MSDN article “RESTORE HEADERONLY”.

CompatibilityLevel int See the MSDN article “RESTORE HEADERONLY”.

SoftwareVendorId int See the MSDN article “RESTORE HEADERONLY”.
SoftwareVersionMajor int See the MSDN article “RESTORE HEADERONLY”.

49

SoftwareVersionMinor int See the MSDN article “RESTORE HEADERONLY”.
SovtwareVersionBuild int See the MSDN article “RESTORE HEADERONLY”.

MachineName varchar See the MSDN article “RESTORE HEADERONLY”.
Flags int See the MSDN article “RESTORE HEADERONLY”.

BindingID varchar See the MSDN article “RESTORE HEADERONLY”.
RecoveryForkID varchar See the MSDN article “RESTORE HEADERONLY”.

COLLATION varchar See the MSDN article “RESTORE HEADERONLY”.

FamilyGUID varchar See the MSDN article “RESTORE HEADERONLY”.
HasBulkLoggedData bit See the MSDN article “RESTORE HEADERONLY”.

IsSnapshot bit See the MSDN article “RESTORE HEADERONLY”.
IsReadOnly bit See the MSDN article “RESTORE HEADERONLY”.

IsSingleUser bit See the MSDN article “RESTORE HEADERONLY”.

HasBackupChecksums bit See the MSDN article “RESTORE HEADERONLY”.
IsDamaged bit See the MSDN article “RESTORE HEADERONLY”.

BeginsLogChain bit See the MSDN article “RESTORE HEADERONLY”.
HasIncompleteMeatdata bit See the MSDN article “RESTORE HEADERONLY”.

IsForceOffline bit See the MSDN article “RESTORE HEADERONLY”.
IsCopyOnly bit See the MSDN article “RESTORE HEADERONLY”.

FirstRecoveryForkID varchar See the MSDN article “RESTORE HEADERONLY”.

ForkPointLSN varchar See the MSDN article “RESTORE HEADERONLY”.
RecoveryModel varchar See the MSDN article “RESTORE HEADERONLY”.

DifferentialBaseLSN varchar See the MSDN article “RESTORE HEADERONLY”.
DifferentialBaseGUID varchar See the MSDN article “RESTORE HEADERONLY”.

BackupTypeDescription varchar See the MSDN article “RESTORE HEADERONLY”.

BackupSetGUID varchar See the MSDN article “RESTORE HEADERONLY”.
CompressedBackupSize bigint See the MSDN article “RESTORE HEADERONLY”.

CONTAINMENT tinyint See the MSDN article “RESTORE HEADERONLY”.

Minion.BackupHeaderOnlyWork
This table is for internal use only. Do not modify in any way.

Minion.BackupLog
Contains records of backup operations. It contains one time-stamped row for each run of

Minion.BackupMaster, which may encompass several database backup operations. This table stores status

information for the overall backup operation. This information can help with troubleshooting, or just

information gathering when you want to see what has happened between one backup run to the next.

Name Type Description
ID bigint Primary key row identifier.

ExecutionDateTime datetime Date and time the entire backup operation
took place.

STATUS varchar Current status of the backup operation. If Live
Insight is being used the status updates will
appear here. When finished, this column will
typically either read ‘Complete’ or ‘Complete
with warnings’.

50

If, for example, the backup process was halted
midway through the operation, the Status
would reflect the step in progress at the time
the operation stopped.

DBType varchar Database type.

Valid values:
System
User

BackupType varchar Backup type.

Valid values:
Full
Diff
Log

StmtOnly bit Only generated backup statements, instead of
running them.

NumDBsOnServer int Number of databases on server.

NumDBsProcessed int Number of databases processed in this backup
operation.

TotalBackupSizeInMB float Total size of all backup files, in MB.

ReadOnly tinyint Backup readonly option; this decides whether
or not to include ReadOnly databases in the
backup, or to perform backups on only
ReadOnly databases.

A value of 1 includes ReadOnly databases; 2
excludes ReadOnly databases; and 3 only
includes ReadOnly databases.

Valid values:
1
2
3

ExecutionEndDateTime datetime Date and time the entire backup operation
completed.

ExecutionRunTimeInSecs float The duration, in seconds, of the entire backup
operation.

BatchPreCode varchar Precode set to run before the entire backup
operation. This code is set in the
Minion.SettingsServer table.

BatchPostCode varchar Precode set to run after the entire backup
operation. This code is set in the
Minion.SettingsServer table.

BatchPreCodeStartDateTime datetime Start date of the batch precode.

BatchPreCodeEndDateTime datetime End date of the batch precode.

BatchPreCodeTimeInSecs int Batch precode time to run, in seconds.

BatchPostCodeStartDateTime datetime Start date of the batch postcode.

51

BatchPostCodeEndDateTime datetime End date of the batch postcode.

BatchPostCodeTimeInSecs int Batch precode time to run, in seconds.

IncludeDBs varchar A comma-delimited list of database names,
and/or wildcard strings, to include in the
backup operation.

When this is ‘All’ or ‘null’, the operation
processed all (non-excluded) databases.

ExcludeDBs varchar A comma-delimited list of database names,
and/or wildcard strings, to exclude from the
backup operation.

When this is ‘null’, the operation excluded no
databases (except those excluded by
configuration in Minion.BackupSettings).

RegexDBsIncluded varchar A list of databases included in the backup
operation via the Minion Backup regular
expressions feature.

RegexDBsExcluded varchar A list of databases excluded from the backup
operation via the Minion Backup regular
expressions feature.

Minion.BackupLogDetails
Contains records of individual backup operations. It contains one time-stamped row for each individual

database backup operation. This table stores the parameters and settings that were used during the

operation, as well as status information. This information can help with troubleshooting, or just information

gathering when you want to see what has happened between one backup run to the next.

Note: Several of the columns in this table are from the output of Trace Flag 3213; you can read more about

this trace flag at http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-

buffer-exchange-a-vdi-focus.aspx

Name Type Description

ID bigint Primary key row identifier.

ExecutionDateTime datetime Date and time the entire backup operation
took place. If the job were started through
BackupMaster then all databases in that run
have the same ExecutionDateTime. If the job
was run manually from Minion.BackupDB,
then this value will only be for this database.
It will still have a matching row in the
Minion.BackupLog table.

STATUS varchar Current status of the backup operation. If
Live Insight is being used the status updates
will appear here. When finished, this column
will typically either read ‘Complete’ or
‘Complete with warnings’.

http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx

52

PctComplete tinyint Backup percent complete (e.g., 50%
complete).

DBName sysname Database name.

ServerLabel varchar A user-customized label for the server name.
It can be the name of the server,
server\instance, or a label for a server.

For more information, see the ServerLabel
column in Minion.BackupSettingsPath.

NETBIOSName varchar The name of the server from which the
backup is taken.

If the instance is on a cluster, this will be the
name of the cluster node SQL Server was
running on. If it’s part of an Availability
Group, the NETBIOSName will be the physical
name of the Availability Group replica.

IsClustered bit Flag: is clustered.

IsInAG bit Flag: is in an Availability Group.
IsPrimaryReplica bit Flag: is the primary replica.

DBType varchar Database type.

Valid values:
User
System

BackupType varchar Backup type.

Valid values:
Full
Diff
Log

BackupStartDateTime datetime Date and time of backup start.
BackupEndDateTime datetime Date and time of backup end.

BackupTimeInSecs float Backup time, measured in seconds.
MBPerSec float Backup rate, in megabytes per second.

BackupCmd varchar The T-SQL command used to back up the
database.

SizeInMB float Backup file size, in megabytes.
StmtOnly bit Flag: only generate statement.

READONLY tinyint Backup readonly option; this decides whether
or not to include ReadOnly databases in the
backup, or to perform backups on only
ReadOnly databases.

A value of 1 includes ReadOnly databases; 2
excludes ReadOnly databases; and 3 only
includes ReadOnly databases.

Valid values:

53

1
2
3

BackupGroupOrder int Group to which this table belongs. Used
solely for determining the order in which
tables should be backed up.

Most of the time this will be 0. However, if
you choose to take advantage of this feature
a row in Minion.BackupSettings will get you
there. This is a weighted list so higher
numbers are more important and will be
processed first.

For more information, see “How To: Back up

databases in a specific order”.
BackupGroupDBOrder Int Group to which this database belongs. Used

solely for determining the order in which
databases should be backed up.

By default, all databases have a value of 0,
which means they’ll be processed in the order
they’re queried from sysobjects.

Higher numbers have a greater “weight”
(they have a higher priority), and will be
backed up earlier than lower numbers. The
range of GroupDBOrder weight numbers is 0-
255.

For more information, see “How To: Backup

databases in a specific order”.
NumberOfFiles tinyint Number of backup files.

Note that this is not at all related to the
number of files in the database itself.

Buffercount int Total number of I/O buffers to be used for the
backup operation. From the output of Trace
Flag 3213.

MaxTransferSize bigint The largest unit of transfer (in bytes) to be
used between SQL Server and the backup
media. From the output of Trace Flag 3213.

MemoryLimitInMB bigint How much memory the system has available
for backups. From the output of Trace Flag
3213.

TotalBufferSpaceInMB bigint How much memory used to process the
backup. From the output of Trace Flag 3213.

FileSystemIOAlignInKB int The disk block size. From the output of Trace
Flag 3213.

SetsOfBuffers tinyint From the output of Trace Flag 3213.

http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx
http://blogs.msdn.com/b/psssql/archive/2008/01/28/how-it-works-sql-server-backup-buffer-exchange-a-vdi-focus.aspx

54

Verify varchar Specifies when the RESTORE VERIFYONLY
operation is to happen.

Compression bit Flag: Whether backup compression is
performed on this backup.

FileAction varchar Action to take with the backup file(s) (MOVE,
COPY, or NULL).

FileActionTime varchar The time at which to perform the COPY or
MOVE FileAction.

Example values:
AfterBackup
AfterBatch

FileActionBeginDateTime Datetime Date and time of the file action start.
FileActionEndDateTime datetime Date and time of the file action end.

FileActionTimeInSecs int File action time, measured in seconds.
UnCompressedBackupSizeMB int Size of the uncompressed backup, in

megabytes.

CompressedBackupSizeMB int Size of the compressed backup, in megabytes.

CompressionRatio float Backup compression ratio.

As noted in the MSDN Backup Compression
article, “a 3:1 compression ratio indicates
that you are saving about 66% on disk space”.

COMPRESSIONPct numeric Backup compression ratio, in percent.

As noted in the MSDN Backup Compression
article, “a 3:1 compression ratio indicates
that you are saving about 66% on disk space”.

BackupRetHrs tinyint Number of hours to retain the backup files.

BackupLogging varchar Whether log data is only stored on the local
(client) server, or on both the local server and
the central Minion (repository) server.

Example values:
Local
Repo

BackupLoggingRetDays smallint Number of days to retain a history of backups
(in Minion Backup log tables).

Minion Backup does not modify or delete
backup information from the MSDB database.

DelFileBefore bit Whether backup files are to be deleted
before or after the current backup.

DBPreCode nvarchar Code that ran before the backup operation
begans for that database.

DBPostCode nvarchar Code that ran after the backup operation
completed for that database.

DBPreCodeStartDateTime datetime The date and time that the database precode
began.

55

DBPreCodeEndDateTime datetime The date and time that the database precode
ended.

DBPreCodeTimeInSecs int The duration of the database precode run.

DBPostCodeStartDateTime datetime The date and time that the database
postcode began.

DBPostCodeEndDateTime datetime The date and time that the database
postcode ended.

DBPostCodeTimeInSecs Int The duration of the database postcode run.

IncludeDBs varchar Databases included in the backup batch.
ExcludeDBs varchar Databases excluded from the backup batch.

RegexDBsExcluded varchar Databases excluded from the backup batch
via regular expressions.

Verified bit Specifies whether the RESTORE VERIFYONLY
operation was performed.

VerifyStartDateTime
datetime The date and time that RESTORE VERIFYONLY

began.

VerifyEndDateTime
datetime The date and time that RESTORE VERIFYONLY

began.

VerifyTimeInSecs
Int The duration of the RESTORE VERIFYONLY

run.
IsInit bit Flag: Overwrite the existing backup set.

IsFormat bit Flag: Overwrite the existing media header.

Note that Format=1 is equivalent to

Format=1 AND Init=1; therefore,

FORMAT=1 would have overriden the Init

setting.

IsCheckSum bit Flag: Verify each page for checksum and torn
page (if enabled and available) and generate
a checksum for the entire backup.

Descr varchar
IsCopyOnly bit Flag: Perform a copy-only backup.

IsSkip bit Flag: Skip the check of the backup set’s

expiration before overwriting.
BackupName Varchar Backup name.
BackupErrorMgmt varchar Rollup of the two BACKUP flags –

STOP_ON_ERROR and
CONTINUE_AFTER_ERROR.

MediaName varchar The backup set’s media name.

MediaDescription varchar Description of the media set.

ExpireDateInHrs int Number of hours until the backup set for this
backup can be overwritten.

If both ExpireDateInHrs and RetainDays are
both used, RetainDays takes precedence.

RetainDays smallint The number of days that must elapse before
this backup media set can be overwritten.

MirrorBackup bit Flag: Mirror backup.
DynamicTuning bit Flag: Enable dynamic tuning.

ShrinkLogOnLogBackup Bit Flag: Turn on log shrink after log backups.

56

ShrinkLogThresholdInMB int How big (in MB) the log file is before Minion
Backup will shrink it.

ShrinkLogSizeInMB int The size (in MB) the log file shrink should
target. In other words, how big you would
like the log file to be after a file shrink.

This setting applies for EACH log file, not for
all log files totaled.

PreBackupLogSizeInMB float Log size in MB before the backup.

PreBackupLogUsedPct float Log percent used before the backup.
PostBackupLogSizeInMB float Log size in MB after the backup.

PostBackupLogUsedPct int Log percent used after the backup.

PreBackupLogReuseWait varchar Log reuse wait description, before the
backup.

PostBackupLogReuseWait varchar Log reuse wait description, after the backup.

VLFs bigint The number of Virtual Log Files.
FileList varchar A comma delimited list of backup files, in the

format “DISK = ‘<full file path>’, DISK = ‘<full
file path>’”.

IsTDE bit Flag: Is a TDE database.

BackupCert bit Flag: Certificate backups enabled.

CertPword
varbinary Certificate password. This is the password

used to protect the certificate backup.

IsEncryptedBackup bit Flag: Is an encrypted backup.

BackupEncryptionCertName nchar Backup encryption certificate name.

BackupEncryptionAlgorithm varchar Backup encryption certificate algorithm.

BackupEncryptionCertThumbPrint
varbinary Backup encryption certificate thumbprint, a

globally unique hash of the certificate.

DeleteFilesStartDateTime
datetime The date and time that the file deletion

began.

DeleteFilesEndDateTime
datetime The date and time that the file deletion

completed.

DeleteFilesTimeInSecs int The duration of the file deletion run.

Warnings varchar Warnings.

Minion.SyncCmds
This table holds the commands used to synchronize settings and log tables to target servers (which are

configured in the Minion.SyncServer table). Minion.SyncCmds is both a log table and a work table: the

synchronization process uses Minion.SyncCmds to push the synchronization commands to target servers, and

it is also a log of those commands (complete and incomplete).

At the end of a backup, Minion Backup writes logged data to this table as INSERT commands. So, everything

MB wrote to the log tables is automatically entered into this table as a command, to be used on the target

instances. The same thing happens with changes to settings: when you configure Minion Backup to

synchronize settings to a server, it writes those settings as commands in this table, to be run on the target

servers.

57

For more information, see the sections “How to: Synchronize backup settings and logs among instances”,

“Minion.SyncServer”, and “Minion.SyncErrorCmds”.

Note: This table is used by Minion Backup, as well as (if installed) Minion Reindex, and other Minion modules.

Name Type Description
ID Int Primary key row identifier.

ExecutionDateTime Datetime Date and time the command took place.

Status varchar Current status of the sync for this command.
Example values:
In queue
Complete

ObjectName Sysname The name of the table being synced (without
the schema name attached).

Example values:
BackupSyncCmds
BackupLogDetails
BackupFiles

Op varchar Operation being performed on table.

INSERT
UPDATE
DELETE
TRUNCATE

Cmd Nvarchar The synchronization command to be pushed
to one or more sync partners.

Pushed bit Whether it was successfully pushed to all
servers.

Attempts bigint How many times it has attempted to send.
ErroredServers varchar Comma delimited list of servers to which this

command failed to push. (The Data Waiter will
retry these commands, and update the lists,
automatically.)

Minion.SyncErrorCmds
This table holds synchronization commands that have failed, to be retried again later.

For more information, see the sections “How to: Synchronize backup settings and logs among instances”,

“Minion.SyncServer”, and “Minion.SyncCmds”.

Note: This table has the potential to very large, if a replica is down for a long time, or if many replicas are

down. In that case, it might be wise to turn off synchronization for that particular server, and if necessary,

clear that server’s records from Minion.SyncErrorCmds and reinitialize it as a new partner.

Name Type Description

ID bigint Primary key row identifier.
SyncServerName varchar Name of the synchronization target server.

58

SyncDBName varchar The target database name of the
synchronization target server.

Port varchar Port number of the synchronization target
server.

SyncCmdID bigint Command identity number, from the
Minion.SyncCmds table.

STATUS varchar Status of the last synchronization attempt.

Values include “Initial attempt failed”, and
“Fatal error on [servername]”.

LastAttemptDateTime datetime Date last attempted to synchronize the
command to the target server.

Discussion:

The synchronization logging process, along with Minion.SyncErrorCmds, makes it easy to bring a

target server (subscriber) up to date if it has been unavailable for a time. For example, if a target

server is shut down for a day, once it restarts, MB can easily replay those commands starting from

the time the server went down.

Let us take the case where YourServer is set to synchronize with its three Availability Group replicas,

and one of those replicas is down. The sync commands that fail to run against the downed replica

will be logged here for as long as the replica is down. When that replica comes back online, Minion

Backup will run through all the saved commands, bringing the replica’s tables back in sync with the

primary tables. (Note that the other replicas will have been kept up to date this entire time.)

Debug Tables Detail

Minion.BackupDebug
This table holds high level debugging data from backup runs where debugging was enabled. Both the

Minion.BackupMaster and the Minion.BackupDB stored procedures allow you to enable debugging.

Note: The data in Minion.BackupDebug and Minion.BackupDebugLogDetails is useful to Minion support.

Contact us through www.MinionWare.net for help with your backup scenarios and debugging.

Minion.BackupDebugLogDetails
This table holds detailed debugging data from backup runs where debugging was enabled. Note: The data in

Minion.BackupDebug and Minion.BackupDebugLogDetails is useful to Minion support. Contact us through

www.MinionWare.net for help with your backup scenarios and debugging.

Work Tables Detail

Minion.BackupRestoreFileListOnlyTemp
This table is for internal use only. Do not modify in any way.

http://www.minionware.net/
http://www.minionware.net/

59

Minion.DBMaintDBSizeTemp
This table is for internal use only. Do not modify in any way.

Note that this table is shared between Minion modules.

Minion.Work
This table is for internal use only. Do not modify in any way.

Note that this table is shared between Minion modules.

Overview of Views
Minion Backup comes with three views:

 Minion.BackupFilesCurrent – Provides the most recent batch of backup file information.

 Minion.BackupLogCurrent – Provides the most recent batch of backup operations.

 Minion.BackupLogDetailsCurrent – Provides the most recent batch of backup operations (at the detail

level).

Overview of Procedures
Two separate procedures execute backup operations for Minion Backup: one procedure runs per database,

and the other is a “Master” procedure that performs run time logic and calls the DB procedure as

appropriate.

In addition, Minion Backup comes with a Help procedure to provide information about the system itself.

Backup procedures:

 Minion.BackupMaster – This procedure makes all the decisions on which databases to back up, and what

order they should be in.

 Minion.BackupDB – This procedure is called by Minion.BackupMaster to perform backup for a single

database.

 Minion.HELP – Display help on Minion Backup objects and concepts.

Procedures Detail

Minion.BackupDB
The Minion.Backup DB stored procedure performs backups for a single database. Minion.Backup DB is the

procedure that creates and runs the actual backup statements for databases which meet the criteria stored

in the settings table (Minion.BackupSettings).

60

IMPORTANT: We HIGHLY recommend using Minion.BackupMaster for all of your backup operations, even

when backing up a single database. Do not call Minion.BackupDB to perform backups.

The Minion.Backup Master procedure makes all the decisions on which databases to back up, and what order

they should be in. It’s certainly possible to call Minion.BackupDB manually, to back up an individual

database, but we instead recommend using the Minion.BackupMaster procedure (and just include the single

database using the @Include parameter). First, it unifies your code, and therefore minimizes your effort. By

calling the same procedure every time you reduce your learning curve and cut down on mistakes. Second,

future functionality may move to the Minion.BackupMaster procedure; if you get used to using

Minion.Backup Master now, then things will always work as intended.

Name Type Description

@DBName SYSNAME Database name.

@BackupType VARCHAR Backup type.

Valid inputs:
Full
Log
Diff

@StmtOnly BIT Generate back up statements without running
the statements.

@ExecutionDateTime DATETIME Date and time the backup took place.

If this SP was called by Minion.BackupMaster,
@ExecutionDateTime will be passed in, so this
backup is included as part of the entire (multi-
database) backup operation.

@Debug bit Enable logging of special data to the debug
tables.

For more information, see
“Minion.BackupDebug” and
“Minion.BackupDebugLogDetails”.

Minion.BackupFileAction
This stored procedure is called by the backup routine to perform the backup file action – MOVE or COPY –

you specified in the table. Minion.BackupFileAction will MOVE or COPY any number of files to any number of

locations.

Name Type Description
@DBName Sysname Database name.

@DateLogic Varchar The date and time, in YYYYMMDDHHMMSS
format. Used to select the correct records
from Minion.BackupFiles.

@BackupType Varchar Backup type.

Valid inputs:
Full

61

Log
Diff

@ManualRun Bit Determines whether or not to log the backup
action.

Note: This procedure only takes the first “move” command, because the file won't be there anymore if you

try to move it twice. But, you can have as many copies as you like.

Warning: You should be careful as this can run for a very long time and could increase the time of your

backups if you run this inline.

Minion.BackupFilesDelete
This stored procedure is responsible for deleting backup files from disk, which have aged out according to the

RetHrs column in the Minion.BackupFiles table. It is called from Minion.BackupDB, and can be run either

before or after the backup. Minion.BackupFilesDelete can also be run manually, with a custom retention

hours setting.

Note: This routine will never delete a file where IsArchive = 1 in Minion.BackupFiles. Archive files are saved

indefinitely.

For more information, see “About: Backup file retention”.

Name Type Description

@DBName varchar Database name.

The value ‘All’ will delete files for all databases
on the instance.

Valid options:
<database name>
All

@RetHrs Int Delete files older than the number of hours
specified here.

NULL will cause the SP to use the retention
hours (RetHrs) field in the Minion.BackupFiles
table.

@Delete Bit Delete files. Defaults to 1.

@Delete=0 will return a list of the files that
will be deleted, and the amount of space that
would be freed.

@EvalDateTime Datetime Evaluate the file age against this date and
time.

Defaults to NULL, which evaluates the file
dates against the current time.

62

Passing in your own value causes the delete
process to compute file age against this
hypothetical date, instead of the current date.
This lets you delete files, or see what files
WOULD be deleted, as if it were a different
datetime. Combined with @Delete = 0, and
you can see what files will be deleted on which
day, and how much disk space you would
save.

WARNING: If you set @EvalDateTime to a far
enough date in the future (say, a year) and
pass in @Delete=1, you will delete ALL of your
backup files.

Discussion:

Minion.BackupFilesDelete is useful in a number of ways. Of course, it is run with every backup operation, to

keep outdated backup files cleared out.

The interesting part of this stored procedure is the functionality the parameters give you:

 @DBName = ‘All’ will let you delete files for all databases on the server, based off of the other

parameters. This is a great breakthrough when you need to clean up all of the databases’ backup files.

One example of when you would need this, is if permissions to the SQL account were removed from the

NAS, and the files hadn’t been deleting. You have 500 databases on the server, and they all need to be

cleaned up. @DBName=’All’ would take care of it.

 @Delete = 0 will only report on what would be deleted, with the current parameter settings. (@Delete=0

is similar to PowerShell’s -WhatIf parameter.)

 @RetHrs = NULL uses the RetHrs setting in the Minion.BackupSettings table. Pass in your own value

instead, and the procedure will use that instead. This allows you to do custom cleanups.

 @EvalDateTime = NULL evaluates the file dates against the current time. Passing in your own value will

evaluate the file dates against that time. This is very useful, as it lets you delete files as if it were a

different datetime. Combined this with @Delete = 0, and you can see what files will be deleted on which

day.

Below are three examples of how you can use this procedure:

 Delete files for a single database.

 Manually delete backup files, using a custom retention period.

 Check to see what databases would be deleted, for a custom retention period and date.

Example execution:

63

-- Delete files for a single database.
EXEC [Minion].[BackupFilesDelete]
 @DBName = 'DB1',

 @RetHrs = NULL, -- Use the configured retention period.
 @Delete = 1,
 @EvalDateTime = NULL;

Example execution:

-- Delete files forall databases, using a custom retention period.
EXEC [Minion].[BackupFilesDelete]
 @DBName = 'All',
 @RetHrs = 24, -- Pass in specific hrs to do a custom delete.
 @Delete = 1,
 @EvalDateTime = NULL;

Example execution:

-- Play “what if”; check to see what databases would be deleted.
EXEC [Minion].[BackupFilesDelete]
 @DBName = 'All',
 @RetHrs = NULL,
 @Delete = 0, -- 0: report files that will be deleted.
 @EvalDateTime = '6/1/2015 06:00:00'; -- The SP will pretend this is the current date.

Minion.BackupMaster
The Minion.Backup Master is the central procedure of Minion Backup. It uses the parameter and/or table

data to make all the decisions on which databases to back up, and what order they should be in. This stored

procedure calls the Minion.Backup DB stored procedure once per each database specified in the parameters;

or, if @Include = “All” is specified, per each eligible database in sys.databases.

In addition, Minion.BackupMaster performs extensive logging, runs configured pre- and postcode, enables

and disables the status monitor job (which updates log files for Live Insight, providing percent complete for

each backup), determines AG backup location, performs file actions (such as copy and move), and runs the

Data Waiter feature to synchronize log and settings data across instances.

Minion Enterprise Hint

We are planning a Minion Enterprise tool that will centrally delete backup files for all

servers!

See www.MinionWare.net for more information, or

email us today at Support@MidnightDBA.com for a demo!

http://www.minionware.net/
mailto:Support@MidnightDBA.com

64

In short, Minion.BackupMaster decides on, runs, or causes to run every feature in Minion Backup.

Name Type Description
@DBType Varchar The type of database.

Valid inputs:
System
User

@BackupType Varchar Specifies full, log, or differential backups.

Valid inputs:
Full
Log
Diff

@StmtOnly Bit Allows you to generate backup statements
only, instead of running them. This is a good
option if you ever need to run backup
statements manually.

@Include Varchar Use @Include to run backups on a specific list
of databases, or databases that match a LIKE
expression. Alternately, set @Include=’All’ or
@Include=NULL to run maintenance on all
databases.

If, during the last backup run, there were
backups that failed, and you need to back
them up now, just call this procedure with
@Include = 'Missing'. The SP will search the
log for the backups that failed in the previous
batch (for a given BackupType and DBType),
and back them up now. Note that the
BackupType and DBType must match the
errored out backups.

Valid inputs:
NULL
Regex
Missing
<comma-separated list of DBs including
wildcard searches containing '%'>

For more information, see “How to: Include
databases in backups”.

@Exclude Varchar Use @Exclude to skip backups for a specific list
of databases, or databases that match a LIKE
expression.

Examples of valid inputs include:
DBname
DBName1, DBname2, etc.

65

DBName%, YourDatabase, Archive%

For more information, see “How To: Exclude
databases from backups”.

@ReadOnly Tinyint Use @ReadOnly to
(1) include ReadOnly databases, (2) exclude
ReadOnly databases, or (3) only include
ReadOnly databases.

@Debug Bit Enable logging of special data to the debug
tables.

For more information, see
“Minion.BackupDebug” and
“Minion.BackupDebugLogDetails”.

@SyncSettings bit Enable synchronization of backup settings
among instances in an existing Data Waiter
scenario. For more information see, “How to:
Synchronize backup settings and logs among
instances”.

@SyncLogs bit Enable synchronization of backup logs among
instances in an existing Data Waiter scenario.
For more information see, “How to:
Synchronize backup settings and logs among
instances”.

@FailJobOnError bit Cause the job to fail if an error is encountered.
If an error is encountered, the rest of the
batch will complete before the job is marked
failed.

@FailJobOnWarning bit Cause the job to fail if a warning is
encountered. If a warning is encountered, the
rest of the batch will complete before the job
is marked failed.

@TestDateTime Datetime A “what if” parameter that allows you to see
what backup schedule will be used at a certain
date and time. This returns the settings from
Minion.BackupSettingsServer that would be
used at that date and time, and a list of
databases (and their order) to be included in
the batch.

IMPORTANT: To ONLY run the test, and not
the actual backups, run with @StmtOnly = 1.
For example: EXEC Minion.BackupMaster
@StmtOnly = 1, @TestDateTime = '2016-09-28
18:00';

66

Minion.BackupRestoreDB
This procedure will generate restore statements based on existing backup files.

For full or differential backups, the procedure will generate a “restore database” statement based on the

most recent backup of that backup type. For log backups, the procedure will generate a list of “restore log”

statements, starting with the first log backup taken after the most recent full backup; and ending with the

most recent log backup. In other words, @BackupType=’Log’ will generate statements to roll through all

recent log backups.

Name Type Description
@DBName sysname Database name

@BackupType varchar Backup type.

Valid inputs:
Full
Diff
Log

@BackupLoc varchar Backup location (by category). You can restore
from the primary backup location, from a copy
location, a mirror location, or a move location.

Note: “Backup” and “Primary” both mean the
primary backup location.

Valid inputs:
Backup
Primary
Mirror
Copy
Move

@StmtOnly bit Generate log statements only. Currently,
@StmtOnly = 1 is the only valid input.

Example: Generate restore statement, from the mirror location, for the most recent DB1 full backup

EXEC [Minion].BackupRestoreDB
 @DBName = 'DB1',
 @BackupType = 'Log' ,
 @BackupLoc = 'Mirror' ,
 @StmtOnly = 1;

Example: Generate log restore statements for all log backups since the most recent DB1 full backup

EXEC [Minion].BackupRestoreDB
 @DBName = 'DB1',
 @BackupType = 'Log' ,
 @BackupLoc = 'Primary' ,

67

 @StmtOnly = 1;

Minion.BackupSyncLogs
This is a key “Data Waiter” procedure. It prepares log data to be pushed across to target servers.

The master backup procedure Minion.BackupMaster calls Minion.BackupSyncLogs, which loads log data to

the Minion.SyncCmds table as insert and delete statements.

For more information, see “How to: Synchronize backup settings and logs among instances” and “About:

Synchronizing settings and log data with the Data Waiter”.

Name Type Description
@ExecutionDateTime Datetime The date of the backup batch to synchronize.

Minion.BackupSyncSettings
This is a key “Data Waiter” procedure. It prepares settings data to be pushed across to target servers.

The master backup procedure Minion.BackupMaster calls Minion.BackupSyncSettings, which loads a

TRUNCATE TABLE statement to the Minion.SyncCmds table; then loads settings data to the table as insert

statements.

Note: We chose to truncate and fully reinitialize settings data on sync partners; and to just push

INSERT/UPDATE/DELETE statements for log data changes to sync partners; because settings tables tend to be

far smaller tables than log tables, and it makes sense to get the full current “snapshot” of settings from the

primary server.

For more information, see “How to: Synchronize backup settings and logs among instances” and “About:

Synchronizing settings and log data with the Data Waiter”.

Name Type Description

@ExecutionDateTime Datetime The date of the backup batch to synchronize.

Minion.BackupStatusMonitor
Updates Minion.BackupLogDetails with the percent complete of running backups.

The Minion.BackupMaster stored procedure starts the “MinionBackupStatusMonitor” job, which calls

Minion.BackupStatusMonitor, at the beginning of a backup batch; and stops the job when the backup batch

is complete.

Name Type Description

68

@IntervalInSecs varchar The amount of time to wait before updating
the table again (in the format 'h:m:ss'). Default
value = ‘0:00:05’ (5 seconds).

Minion.BackupStmtGet
This stored procedure builds and returns a backup statement, along with associated data. The

Minion.BackupDB procedure calls it to generate backup statements.

You can also use Minion.BackupStmtGet to determine which backup options and settings will be used for a

given backup. This is particularly helpful for testing your settings and backup tuning thresholds.

Name Type Description

@DBName Sysname Database name.
@BackupType Varchar Specifies full, log, or differential backups.

Valid inputs:
Full
Diff
Log

@DBSize Decimal Database size. This parameter makes it
possible to test the settings of the database at
various hypothetical sizes. See discussion
below.

Example: Get statement for DB1 log backup

EXEC [Minion].[BackupStmtGet]
@DBName = 'DB1',
@BackupType = 'Log',
@DBSize = NULL;

Discussion: The Result Set

Minion.BackupStmtGet returns one row per backup file. The procedure returns the backup command, as well

as a long list of related items (such as server name, backup path, path order, compression, etc.).

Discussion: The DBSize Parameter

The DBSize parameter is especially cool. When you run Minion.BackupStmtGet with a specific @DBSize, the

procedure generates the backup statement for the database as if the database were currently that size. Of

course, with normal, untuned backups this would have no impact; but when you use backup tuning

thresholds, the size of the database determines which settings will be used.

Let’s say your database is 50GB, but you want to know if you’ve configured the dynamic settings correctly for

it when it reaches 100GB. You can use the @DBSize parameter to test the settings like this:

69

EXEC [Minion].[BackupStmtGet]
 @DBName = 'AdventureWorks',
 @BackupType = 'Log',
 @DBSize = 100;

This procedure will not run the backup, delete any files, or do any other action; it only generates the backup

statements and returns them, along with backup files and other information. Feel free to use this as much as

you like to help you make sure your configuration is what you expect.

Minion.CloneSettings
This procedure allows you to generate an insert statement for a table, based on a particular row in that table.

We made this procedure flexible: you can enter in the name of any Minion table, and a row ID, and it will

generate the insert statement for you.

WARNING: This generates a clone of an existing row as an INSERT statement. Before you run that insert, be

sure to change key identifying information - e.g., the DBName - before you run the INSERT statement; you

would not want to insert a completely identical row.

Name Type Description
@TableName Varchar The name of the table to generate an insert

statement for.

Note: This can be in the format
"Minion.BackupSettings" or just
"BackupSettings".

@ID Int The ID number of the row you'd like to clone.
See the discussion below.

@WithTrans Bit Include “BEGIN TRANSACTION” and
“ROLLBACK TRANSACTION” clauses around the
insert statement, for safety.

Discussion:

Because of the way we have writte Minion Backup, you may often need to insert a row that is nearly identical

to an existing row. If you want to change just one setting, you still have to fill out 40 columns. For example,

you may wish to insert a row to Minion.BackupSettings that is only different from the MinionDefault row in

two respects (e.g., DBName and Verify).

We created Minion.CloneSettings to easily duplicate any existing row in any table. This "helper" procedure

lets you pass in the name off the table you would like to insert to, and the ID of the row you want to model

the new row off of. The procedure it returns an insert statement so you can change the one or two values

you want.

Discussion: Identity columns

70

If the table in question has an IDENTITY column, regardless of that column’s name, Minion.CloneSettings will

be able to use it to select your chosen row. For example, let’s say that the IDENTITY column of Table1 is

ObjectID, and that you call Minion.CloneSettings with @ID = 2. The procedure will identify that column and

return an INSERT statement that contains the values from the row where ObjectID = 2.

Minion.HELP
Use this stored procedure to get help on any Minion Backup object without leaving Management Studio.

Name Type Description
@Module Varchar The name of the module to retrieve help for.

Valid inputs include:
NULL
Reindex
Backup
CheckDB

@Name varchar The name of the topic for which you would
like help.

If you run Minion.HELP by itself, or with a
@Module specified, it will return a list of
available topics.

@Keyword bit This flag forces @Name to behave as a
keyword; Minion.Help will use it to search all
topic headers and body, and return a list of
topics.

This flag is optional; if Minion.HELP does not
find a topic named @Name, it will perform the
keyword search anyway.

Examples:

For introductory help, run:

EXEC Minion.HELP;

For introductory help on Minion Backup, run:

EXEC Minion.HELP 'Backup';

For help on a particular topic – in this case, the Top 10 Features – run:

EXEC Minion.HELP 'Backup', 'Top 10 Features';

To search for a keyword or key hrase, use the @Keyword parameter:

EXEC Minion.HELP 'Backup', 'restore', 1;

71

Minion.SyncPush
This is a key “Data Waiter” procedure. It pushes log and settings data to Minion Backup tables on other SQL

Server instances, which are configured as synchronization partners.

Minion.SyncPush is meant to be run as an automated process most of the time. The automated Data Waiter

process pulls sync server name (target server), sync database name (the target database), and port from the

Minion.SyncServer table.

Adding or repairing a sync partner is a manual process. In that case, you would supply all the parameters to

Minion.SyncPush, including @Process=’All’, to push all existing records to the target server.

For more information, see “How to: Synchronize backup settings and logs among instances” and “About:

Synchronizing settings and log data with the Data Waiter”.

Name Type Description

@Tables Varchar The category of table that you want to sync:
log tables, settings tables, or both.

Note: NULL is equivalent to All.

Valid inputs:
NULL
All
Logs
Settings

@SyncServerName Varchar

This is the name of the target server you want
to push the data to. Note that this parameter
accepts a single server name, not a delimited
list.

@SyncDBName Varchar

This is the name of the database on the new
server that holds the Minion tables.

@Port Varchar

The port to be used for the connection to the
new SQL Server.

@Process Varchar

Which records to you want to process: just the
new ones, or all of them.

Most of the time, you will want to run with
“New”. “All” is used for bringing on new
servers when you want to push all the records
in the table to that server.

Valid inputs:
All
New

72

@Module Valid inputs:
Backup

Overview of Jobs
When you install Minion Backup, it creates two new jobs:

 MinionBackup-Auto – Runs every half hour. This job consults the Minion.BackupSettingsServer table to

determine what, if any, backups are slated to run at that time. By default, the

Minion.BackupSettingsServer table is configured with Saturday full backups, daily weekday differential

backups, and log backups every half hour.

 MinionBackup-StatusMonitor – Monitor job that updates the log tables with “backup percentage

complete” data. By default, this job runs continuously, updating every 10 seconds, while a Minion Backup

operation is running.

“About” Topics
The “About” topics document more detailed information about various segments of Minion Backup.

About: Backup Schedules
Minion Backup offers you a choice of scheduling options:

 You can use the Minion.BackupSettingsServer table to configure flexible backup scheduling

scenarios;

 Or, you can use the traditional approach of one job per backup schedule;

 Or, you can use a hybrid approach that employs a bit of both options.

For more information, see “Changing Schedules” in the Quick Start section, and “How to: Change backup

schedules”.

Table based scheduling
When Minion Backup is installed, it uses a single backup job to run the stored procedure

Minion.BackupMaster with no parameters, every 30 minutes. When the Minion.BackupMaster procedure

runs without parameters, it uses the Minion.BackupSettingsServer table to determine its runtime parameters

(including the schedule of backup jobs per backup type). This is how MB operates by default, to allow for the

most flexible backup scheduling with as few jobs as possible.

Table based scheduling presents multiple advantages:

 A single backup job – Multiple backup jobs are, to put it simply, a pain. They’re a pain to update

and slow to manage, as compared with using update and insert statements on a table.

73

 Fast, repeatable configuration – Keeping your backup schedules in a table saves loads of time,

because you can enable and disable schedules, change frequency and time range, etc. all with an

update statements. This also makes standardization easier: write one script to alter your backup

schedules, and run it across all Minion Backup instances (instead of changing dozens or hundreds

of jobs).

 Mass updates across instances – With a simple PowerShell script, you can take that same script

and run it across hundreds of SQL Server instances, standardizing your entire enterprise all at

once.

 Transparent scheduling – Multiple backup jobs tend to obscure the backup scenario, because

each piece of the configuration is displayed in separate windows. Table based scheduling allows

you to see all aspects of the backup schedule in one place, easily and clearly.

 Boundless flexibility – Table based scheduling provides an amazing degree of flexibility that

would be very troublesome to implement with multiple jobs. With one job, you can schedule all

of the following:

o System full backups three days a week.

o User full backups on weekend days and Wednesday.

o DB1 log backups between 7am and 5pm on weekdays.

o All other user log backups between 1am and 11pm on all days.

o Differential backups for DB2 at 2am and 2pm.

o Read only backups on the first of every month.

o …and each of these can also use dynamic backup tuning, which can also be slated for

different file sizes, applicable at different times and days of the week and year.

o …and each of these can also stripe across multiple files, to multiple locations, and/or

copy to secondary locations, and/or mirror to a secondary location.

Parameter Based Scheduling
Other SQL Server native backup solutions traditionally use one backup job per schedule. Typically and at a

minimum, that means one job for system database full backups, one job for user database full backups, and

one job for log backups.

Note: Whether you use table based or parameter based scheduling, we highly recommend always using the

Minion.BackupMaster stored procedure to run backups. While it is possible to use Minion.BackupDB to

execute backups, doing so will bypass much of the configuration and logging benefits that Minion Backup was

designed to provide.

Discussion: Hierarchy and Precedence
There is an order of precedence to these settings, from least frequent (First/LastOfYear) to most frequent

(daily); the least frequent setting, when it applies, takes precedence over all others. For example, if today is

the first of the year, and there is a FirstOfYear setting, that’s the one it runs.

The full list, from most frequent, to least frequent (and therefore of highest precedence), is:

74

1. Daily

2. Weekday / Weekend

3. Monday / Tuesday / Wednesday / Thursday / Friday / Saturday / Sunday

4. FirstOfMonth / LastOfMonth

5. FirstOfYear / LastOfYear

Note that the least frequent “Day” settings – FirstOfYear, LastOfYear, FirstOfMonth, LastOfMonth – only

apply to user databases, not to system databases. System databases may have “Day” set to a day of the week

(e.g., Tuesday), Daily, or NULL (which is equivalent to “Daily”).

Discussion: Overlapping Schedules, and MaxForTimeframe
The Minion.BackupSettingsServer table allows you to have backup schedule settings that overlap. For

example, we could perform a differential backup at the top of every hour, and then log backups every 5

minutes. For this scenario, we would:

 Insert one row for the differential backup, with a MaxForTimeframe value of 24 and FrequencyMins

set to 60.

 Insert one row for log backups, with a MaxForTimeframe value of 288 (or more, as there are only

288 5-minute increments in a day).

 Set the backup job MinionBackup-AUTO to run every 5 minutes.

The sequence of job executions then goes like this:

1. At 8:00am, the MinionBackup-AUTO job will run.

2. Minion Backup determines that a differential backup is slated for that hour.

3. MB will execute the differential backup, which takes precedence over the log backup. The log backup

is not executed during this run.

4. MB also increments the differential CurrentNumBackups for that timeframe.

5. At 8:05, the MinionBackup-AUTO job will run again.

6. Minion Backup determines that the differential backup has already happened within the last 60

minutes. (The differential is limited to one per hour via the MaxForTimeframe field.)

7. MB executes the log backup, and increments the differential CurrentNumbackups.

And, so on.

Important: The MaxForTimeframe field may limit you when running manual backups. Specifically, when you

run Minion.BackupMaster with @BackupType=NULL). For example, if only one full backup is slated for

Saturday, and it has already run, then CurrentNumBackups will be 1. As the daily MaxForTimeframe value is

1, executing Minion.BackupMaster will fail, because the max has been reached. Even a manual run won’t let

you run that backup. You would have to either reset the count, change MaxForTimeframe to 2 (and then

change it back after the manual run), or run Minion.BackupMaster with @BackupType populated.

75

Note that the above paragraph does not apply for instances when you run Minion.BackupMaster with

@BackupType populated with a value (a true “manual backup”). In this case – with @BackupType populated

– no reference is made to Minion.BackupSettingsServer at all.

Discussion: Sample row for missing backups
Remember that you can run Minion.BackupMaster with Include=’Missing’ (either in the parameter, or in

Minion.BackupSettingsServer, if you’re using table based scheduling) to check for incomplete backups from

the last run, for a given database type and backup type (e.g., ‘User’, ‘Diff’)

The Minion.BackupSettingsServer includes a sample row – the Include=’Missing’ row, which is inactive by

default –to check for missing differential backups. The row is scheduled to run once at 5:00am (but it won’t,

unless you set isActive = 1). This is an example that you could enable, to give your routine an automatic check

for missing backups.

Discussion: Using FrequencyMins
The FrequencyMins column allows you to run the SQL Agent backup job as often as you like, but to space

backups out by a set interval. Let’s say that the backup job runs every 5 minutes, but log backups should only

run every 30 minutes. Just set FrequencyMins = 30 for the Log backup row(s).

One scenario where this might apply is needing a job to run every 5 minutes, so that user database backups

can start as soon as possible after system database backups. Without FrequencyMins, this would cause the

log backups to run every time the job runs. With log backups FrequencyMins=30, the job will see that it

hasn’t yet been 30 minutes since the last log backup, and it won’t take log backups yet.

About: Backup file retention
The backup file deletion cycle is this:

1. Backup file retention settings are configured in the Minion.BackupSettingsPath table.

2. Each time Minion Backup takes a backup, it logs one row per backup file in the Minion.BackupFiles

table. These rows include, among other data, the RetHrs (retention in hours) field for that file.

3. The procedure Minion.BackupFilesDelete runs with every backup operation; it checks the

Minion.BackupFiles table to see which files should be deleted. And, of course, it deletes them.

IMPORTANT: As the RetHrs field in Minion.BackupSettingsPath is just the configuration value, not the

configured retention value. In other words, updating the RetHrs field in Minion.BackupSettingsPath has no

effect on the existing backup files’ retention settings; that field only sets the retention for future backup

files.

If you reduce the RetHrs value in Minion.BackupSettingsPath, and would like it to also apply to the existing

backup files (regardless of their current retention settings), you have two options:

 Use Minion.BackupFilesDelete with a custom retention, or

 Update the Minion.BackupFiles log table.

76

Minion.BackupFilesDelete procedure: You can call the Minion.BackupFilesDelete stored procedure for your

specified database – or, for @DBName=’All’ – and pass in a specific retention hours using the @RetHrs

parameter. For example, to delete all YourDatabase backup files – full, diff, and log – older than 24 hours, run

the following:

EXEC [Minion].[BackupFilesDelete]
 @DBName ='YourDatabase',
 @RetHrs = 24 ,
 @Delete = 1 ;

Minion.BackupFiles table: Update RetHrs in the Minion.BackupFiles table manually for that database. For

example:

UPDATE Minion.BackupFiles
SET RetHrs = 24
WHERE DBName = 'YourDatabase';

Then, you can either call Minion.BackupFilesDelete manually, or wait for it to run as scheduled.

About: Synchronizing settings and log data with the Data Waiter
Minion Backup provides a “Data Waiter” feature, which syncs backup settings and backup logs between

instances of SQL Server. This is especially useful in failover situations – for example, Availability Groups,

replication scenarios, or mirrored partners – so that all the latest backup settings and logs are available,

regardless of which node is the primary at any given time.

Note: This feature is informally known as the Data Waiter, because it goes around and gives data to all of

your destination tables. (Get it??)

For detailed instructions on configuring the Data Waiter, see “How to: Synchronize backup settings and logs

among instances”.

IMPORTANT: When you enable log sync or settings sync for a schedule, it becomes possible for the Data

Waiter to cause the backup job to run very long, if there are synch commands that fail (for example, due to a

downed sync partner). Consider setting the timeout to a lower value in Minion.SyncServer, to limit the

amount of time that the Data Waiter will wait.

Moving Parts
A complete Data Waiter scenario has several moving parts on the primary instance:

 The Minion.SyncServer table allows you to configure synchronization partners (i.e., server to

which you would like the primary instance to share data).

 The fields “SyncLogs” and “SyncSettings” in the Minion.BackupSettingsServer table allow you

to enable log and/or settings synchronization for one or more schedules. So, if you enable

77

SyncSettings on a weekly schedule, your settings will be synchronized weekly; enable log settings

on a log backup schedule that runs hourly, and the log settings will synchronize hourly.

 The Minion.BackupSyncLogs procedure loads INSERT/UPDATE/DELETE statements, designed to

bring log data up to date, to the Minion.SyncServer table.

 The Minion.BackupSyncSettings procedure loads a snapshot of the settings data (TRUNCATE /

INSERT) to the Minion.SyncServer table.

 The Minion.SyncCmds table holds the synchronization commands that are to be pushed to sync

partners.

 The Minion.SyncPush procedure pushes data to sync partners. We use this to initialize the synch

partner in the beginning; and Minion Backup uses it to keep sync partners up to date.

 The Minion.SyncErrorCmds table holds synchronization commands that failed to push to sync

partners. In tandem with the Minion.SyncCmds “ErroredServers” field, Minion.SyncErrorCmds

allows the Data Waiter to retry only those statements that failed, and only on those sync

partners where they failed.

When enabled and set up, the Data Waiter synchronizes the following tables among configured instances:

 all settings tables, except the Minion.SyncServer table (because that table’s data is only

applicable on the current instance).

 all log tables, except:

o Minion.BackupDebug

o Minion.BackupDebugLogDetails

o Minion.BackupHeaderOnlyWork

o Minion.SyncCmds

o Minion.SyncErrorCmds

o Minion.Work

Use Cases
There are many situations where the Data Waiter feature will be very useful. The primary use case is in any

HA/DR scenario where it is possible to “fail over” to another instance. A few of these use cases:

 Four instances that host Availability Group replicas, where a secondary replica may become

primary.

 A database mirrored across two instances.

 Several databases that are log shipped to a warm standby server.

 A set of databases replicated to several subscriber servers.

 A HA scenario using third party software, which involves multiple instances.

In each of these cases, the Data Waiter provides an additional layer of transparency to the failover process.

After failover, you do not have to reconfigure the backup settings, nor to make sure that old backup files are

deleted (so long as the backups are going to UNC).

78

IMPORTANT: We highly recommend backing up to UNC paths, instead of to locally defined drives. If you have

backups going to UNC, and your HA/DR scenario fails over to another server, that server can continue backing

up to (and deleting old files from) that same location. Conversely, if Minion Backup is configured to back up

locally, it will not be able to delete files from the previous location.

After a failover, you should configure the new primary server’s Minion.SyncServer table to point to the other

sync partner(s) in the Data Waiter scenario. This is very like a log shipping “failover”, where – once you have

failed over to the secondary node – you need to set up log shipping in the other direction.

Failure Handling
In a Data Waiter scenario, if a synchronization partner becomes unavailable over the short term, Minion

Backup will track those entries that failed to synchronize. Each time Minion.SyncPush runs, it will attempt to

push the failed entries to the downed server. So when the instance becomes available again, the Data Waiter

will roll through the changes to bring the sync partner back up to date.

IMPORTANT: Settings and log data that fail to sync through the Data Waiter, do not obstruct the system in

any way (though it may somewhat slow the Data Waiter process over time). For example, the Data Waiter

may fail to push a command to Server1, but it will still push that command (and future ones) to Server2. The

Data Waiter simply tracks the commands that did not sync to Server1 and continues to retry them against

that instance, either until they succeed, or until they become outdated and are archived.

Let’s take a look at different failed sync scenarios:

 Commands that fail to sync to all sync partners will have Pushed = 0, and ErroredServers = <a

comma-delimited list of all sync partners to which the push failed> in Minion.SyncCmds.

 Commands that fail to sync to some, but not all, sync partners will have Pushed = 1, and

ErroredServers = <a comma-delimited list of all sync partners to which the push failed> in

Minion.SyncCmds.

 Any command that failed to synchronize to one or more partners will have an entry in

Minion.SyncErrorCmds.

If a synchronization partner becomes unavailable over a long period of time, we advise that you disable the

Data Waiter for that instance, and reinitialize it as if it were a new sync partner when it again becomes

available. The reason for this is, after even a week or two passes, it is more efficient to set up the partner

again, instead of rolling through all the changes that have accumulated.

Enabling Data Waiter while using parameter based scheduling
Minion Backup uses table based scheduling by default, which retrieves schedule and other server-level

settings from the Minion.BackupSettingsServer table. In fact, the Data Waiter settings and log

synchronization options are enabled in Minion.BackupSettingsServer.

If you choose to use parameter based scheduling instead of table based, then the Data Waiter will not run

automatically. You must instead set up synchronization as you normally would, and then create a job to run

the Data Waiter stored procedures. Check www.MinionWare.net for additional instructions.

http://www.minionware.net/

79

For more information on the Data Waiter process, see “How to: Synchronize backup settings and logs among

instances”.

About: Dynamic Backup Tuning Thresholds
In SQL Server, we can adjust high level settings to improve server performance. Similarly, we can adjust

settings in individual backup statements to improve the performance of backups themselves. A backup tuning

primer is well beyond the scope of this document; to learn about backup tuning, please see the recording of

our Backup Tuning class at http://bit.ly/1O6Rsh3 (download demo code at http://bit.ly/1Os6yzz).

Introduction
Once you are familiar with the backup tuning process, you can perform an analysis, and then set up specific

thresholds in the Minion.BackupTuningThresholds table. It is a “Thresholds” table, because you cannot tune a

backup once and disregard database growth; backup tuning settings must change as a database grows. So,

Minion Backup allows you to configure a different collection of backup tuning settings for different sized

databases (thereby, defining backup tuning thresholds). As your database grows and shrinks, Minion Backup

will use the settings you’ve defined for those sizes, so that backups always stay at peak performance.

Note: You can get more specific information about the Minion.BackupTuningThresholds table in the

“Minion.BackupTuningThresholds” section.

As a small example, here is a limited rowset for Minion.BackupTuningThresholds, which shows different

backup tuning settings for a single database at various sizes, and for two different backup types:

 DBName Backup
Type

Space
Type

Threshold
Measure

Threshold
Value

NumberOf
Files

Buffer
count

MaxTransferSize

DB1 Full DataAnd
Index

GB 0 2 30 1048576

DB1 Full DataAnd
Index

GB 50 5 50 2097152

DB1 Diff DataAnd
Index

GB 0 2 30 1048576

DB1 Log Log GB 0 1 15 1048576

This sample data shows two threshold levels for DB1 full backups: one for databases larger than 50GB, and

one for databases above 0GB. Note that the threshold value is a “floor” threshold: so, if DB1 is 25GB, it will

use the 0GB threshold settings; if it is 60GB, it will use the 0GB threshold settings. The sample data also

shows just one threshold level each for DB1 log backups and DB1 differential backups.

Of course, we could add additional rows for each type, for different size thresholds. This is what puts the

“dynamic” in “dynamic backup tuning”; Minion Backup will automatically change to the new group of settings

when your database passes the defined threshold.

http://bit.ly/1O6Rsh3
http://bit.ly/1Os6yzz

80

Enabled by Default
Default backup tuning settings are in effect the moment that Minion Backup is installed: the system comes

installed with a default “MinionDefault” row in Minion.BackupTuningThresholds. These backup tuning

settings are used for any database which does not have a specific set of thresholds defined for it; as well as

for any database that has dynamic tuning disabled in Minion.BackupSettings.

While this last point may seem inconsistent – after all, why should a database refer to the “MinionDefault”

row in this table if dynamic tuning is disabled? – in fact, it makes perfect sense:

 First, the default backup tuning settings cannot truly be said to be “dynamic”, as the dynamic aspect of

backup tuning comes from having different settings for a database come into effect automatically as the

database grows. The MinionDefault row in this table has a threshold size of 0GB, and so applies to

databases of all sizes.

 Second, most of the settings in the MinionDefault row are “passive”: NumberOfFiles is 1, which is the

case for any backup where number of files is not specified. And Buffercount, MaxTransferSize, and

BlockSize are zero, meaning SQL Server is free to choose the appropriate value for these settings at the

time the backup runs.

Essential Guidelines
There are three essential guidelines for setting dynamic backup tuning thresholds in Minion Backup:

 Any group of tuning thresholds – whether it is the MinionDefault group of settings, or a database-

specific group of settings – must have one row with a “floor” setting of zero.

 Once you have defined a single database-specific row, all backup types for that database must be

represented in one or more rows. (Note that each backup type must also, therefore, have a “floor”

threshold of zero represented.) For more information about this rule, see “The Configuration

Settings Hierarchy Rule” in the “Architecture Overview” section.

 However, if there is a hole in your backup tuning threshold settings, the MinionDefault row acts as

a failsafe. It is best to define your backup tuning settings thoughtfully and with foresight; but the

failsafe is there, just in case of oversights. (This failsafe is the exception to The Configuration Settings

Hierarchy Rule; no other table can rely on the MinionDefault row in this way.)

Important Backup Tuning Concepts
Here is a quick review of important backup tuning threshold concepts in Minion Backup:

 Tune your own: The settings we use for these examples are just that: examples. They are not

recommendations, and have no bearing on your particular environment. We DO NOT

recommend using the example number in this document, without proper analysis of your

particular system.

 Default Settings: Minion Backup is installed with a default backup tuning threshold setting,

defined by the row DBName=’MinionDefault’, BackupType=’All’, and ThresholdValue=0. These

81

settings are in effect for any database with DynamicTuning enabled in the

Minion.BackupSettings.

 Space Types: You have the option of basing our tuning thresholds on data size only, on data and

index size, or on file size. File size includes any unused space in the file; “data and index” does

not.

 Available Data: Minion Backup is a huge help to your analysis, because it gathers and records

the backup settings for EVERY backup (including Buffercount, MaxTransferSize, etc.) in

Minion.BackupLogDetails, whether or not it was a tuned backup.

 Floor Thresholds: The thresholds in Minion.BackupTuningThresholds represent the LOWER

threshold (the “floor”). Therefore, you must be sure to enter a threshold for file size 0.

 Settings Precedence: Minion Backup has a hierarchy of settings, where the most specific setting

takes precedence. See the “Backup Tuning Threshold Precedence” section below.

Backup Tuning Threshold Precedence
Minion Backup has a hierarchy of settings, where the most specific setting takes precedence. The

precedence for backup tuning threshold settings is as follows:

Precedence Level DBName Backuptype
Highest DB1 Full, or Diff, or Log

High DB1 All

Low MinionDefault Full, or Diff, or Log
Lowest MinionDefault All

Note: If you define a database-specific row, we highly recommend that you provide tuning settings for all

backup types, for that database. For example, if you insert one row for YourDatabase with backup type Full,

you should also insert a row for YourDatabase and backup type All (or two additional rows, one each for

differential and log).

Let’s look at an example set of backup tuning threshold settings:

ID DBName BackupType isActive

1 MinionDefault All 1
2 MinionDefault Full 1

3 MinionDefault Log 1
4 DB1 All 1

5 DB1 Full 1

Using these settings, let’s look at which settings will be used when:

 For a DB1 full backup, Minion Backup will use row 5: DBName=DB1, BackupType=Full.

 For a DB1 differential or log backup, Minion Backup will use row 4: DBName=DB1, BackupType=All.

 For a DB2 full backup, Minion Backup will use row 2 (DBName=MinionDefault, BackupType=Full).

 For a DB2 differential backup, Minion Backup will use row 1 (DBName=MinionDefault, BackupType=All).

82

Note: If you are unsure of what backup tuning settings will be used, you can double check; use the

Minion.BackupStmtGet stored procedure, which will build (but not run) the backup statement for you. For

more information, see “Minion.BackupStmtGet”.

Business Aware Dynamic Backup Tuning
What’s more, Minion Backup’s dynamic backup tuning can be made “business aware”, in a sense. For

example, configure one set of tuning thresholds for weekday business hours, and another set for after hours and

weekends. Or, perhaps you need a different set of configurations for Monday, because that’s the busiest day.

Here is a high-level overview of one way to set up “business aware” backup tuning scenarios:

1. Perform your backup tuning analysis, and determine the settings for two scenarios:

a. one low-resource scenario for times when the server is busy (say, weekdays); and

b. one high-resource scenario for when the server is largely unused (e.g., on the weekend).

2. Insert rows to Minion.BackupTuningThresholds for the low-resource scenario, and set IsActive=1.

3. Insert additional rows to Minion.BackupTuningThresholds for the high-resource scenario, and set

IsActive=0.

4. Set up your backup routine with precode that checks the day of the week;

a. If the day is Saturday or Sunday, the precode sets isActive=1 in

Minion.BackupTuningThresholds for the high-resource scenario, and isActive=0 for the low-

resource scenario.

b. Otherwise, the precode enables the low-resource scenario, and disables the high-resource

scenario.

Tuning Log Backups
Log backups are interesting, because the size of the database doesn’t matter for a log file backup. If your

database is small, but a process has blown the log up to a huge size, the size of the data file has no impact

whatsoever on the log backup. You need to perform a backup tuning analysis for log file backups, just like for

any other backup type. After all, you wouldn’t want to back up a 5MB log file to 10 files!

Any time you have a row in Minion.BackupTuningThresholds with BackupType = 'Log', Minion Backup will

automatically use the space used in the log as the measure for “SpaceType”. So for example, if you have a

100GB log file that is 10% used, the space used in the log file is 10GB; Minion Backup uses this measure – the

10GB – to determine when the threshold should change.

Though the value of SpaceType does not change anything in regards to log backups, we still recommend you

set SpaceType equal to “Log” whenever the BackupType = 'Log', because it is a visual reminder of how the

threshold is calculated.

This feature is meant to keep a huge log from taking hours to process, while other logs are filling up (because

they can't back up yet because of the big one). So, keep a safety net for yourself, and put in a couple tuning

options for your logs. If they grow really big, the payoff of tuned log backups is considerable; well-tuned log

backups take a fraction of the time they ordinarily would.

83

Note: The backup tuning thresholds feature does not shrink the log file. To shrink the log file, see the three

“ShrinkLog%” columns in the Minion.BackupSettings table. These two features – Dynamic Backup Tuning and

Shrink Log on Log Backup – work very well together to keep your system running without intervention from

you. (You’re welcome!) For more information on shrinking the log, see “How to: Shrink log files after log

backup”.

About: Backing up to NUL
As of Minion Backup 1.1, you can now take NUL backups to kick start your backup tuning scenario. This is

used to get your theoretical limit for your backups. The theoretical limit is how fast your backups could

theoretically go; it is an important step in tuning your backups.

The column definition for the Minion.BackupSettingsPath table accepts NUL as a valid value for the

BackupLocType, BackupDrive, and BackupPath columns. The routine only cares about the BackupLocType

column, but we advise you to put NUL in all three columns, because it makes your intent very clear.

The backup files for a NUL backup don’t actually exist, so there’s nothing to delete. However, the system

behaves just as if the files do exist, and it marks them as deleted based on the schedule outlined in the

Minion.BackupSettingsPath table.

When you search for files that are still on the drive in the Minion.BackupFilesDelete stored procedure, it

automatically excludes NUL backups from the result set.

IMPORTANT: Minion Backup itself does nothing to help you run the NUL backup just once. You must run the

NUL backup, and then remember to either disable the setting, or switch it to an actual destination. The

PreCode can really help with this because you can set it to flip the settings on specific days, or even just for a

single specific day if you use the date itself. But, there is no automatic mechanism that makes the system

only run NUL once and then go back to normal operation.

For more information on how to use NUL to tune your backups, see our recorded webinar on the

MidnightDBA.com Events page:

http://midnightdba.itbookworm.com/EventVids/SQLSAT90BackupTuning/SQLSAT90BackupTuning.wmv

About: Inline Tokens
Minion CheckDB 1.0 and MinionBackup 1.3 introduce a new feature to the Minion suite – Inline Tokens.

Minion’s Inline Tokens allow you use defined patterns to use and create dynamic names and paths. These

tokens are stored in the Minion.DBMaintInlineTokens table.

For example, MB comes with the predefined tokens “Server” and “DBName”. To create a dynamic backup

path for all backups, we update the path table:

http://midnightdba.itbookworm.com/EventVids/SQLSAT90BackupTuning/SQLSAT90BackupTuning.wmv

84

 UPDATE Minion.BackupSettingsPath
 SET BackupPath = 'SQLBackups\%Server%\%DBName%\';

From then on, the backup path on “YourServer” for database “DB1” will be created as

“…\SQLBackups\YourServer\DB1\”.

MB recognizes %Server% and %DBName% as Inline Tokens, and refers to the Minion.DBMaintInlineTokens

table for the definition.

Create and use a custom Inline Token
To create a custom token, insert a new row to the Minion.DBMaintInlineToken table. Guidelines:

 DynamicName: Use a unique DynamicName.

 ParseMethod: For tokens that use date in some way, we recommmend using @ExecutionDateTime

instead of GetDate or other system date methods.

 IsCustom: Mark IsCustom = 1.

 Definition: Provide a descriptive definition, for the use of you and your DBA team.

For example, we can use the following statement to create an Inline Token to represent the full day name

(like Monday, etc.):

INSERT INTO Minion.DBMaintInlineTokens
 (DynamicName
 , ParseMethod
 , IsCustom
 , Definition
 , IsActive
)
VALUES ('DayNameFull'
 , 'DATENAME(dw, @ExecutionDateTime)'
 , 1
 , 'Returns the full name of the current day (e.g. Monday, Tuesday, etc.).'
 , 1
);

IMPORTANT: The syntax for using this custom Inline Token is “|DayNameFull|”. Notice that default tokens

(like Server) use percent signs (“%Server%”), while custom tokens use pipe delimiters (“|DayNameFull|”).

You can now use this custom token in fields that accept them. See the following section for more

information.

Fields that accept Inline Tokens
You can use Inline Tokens in specific fields, in specific tables.

Minion.BackupSettingsPath:

85

 BackupPath

 FileName

 FileExtension

Note that Inline Tokens reference the Minion.BackupSettingsPath field ServerLabel, but ServerLabel may not

itself contain an Inline Token. (The dynamic part ‘SoSL’ will use the server label if one exists, or the server

name if it doesn’t.)

Minion.BackupRestoreSettingsPath:

 RestorePath*

 RestoreFileName

 RestoreFileExtension

 RestoreDBName

*IMPORTANT: Minion Backup’s restore functionality cannot yet create folders; the restore module only

creates T-SQL statements for you to run manually on the target system. We recommend that you either set

RestorePath to a static value (e.g., “SQLData\”), or use a rarely-changing Inline Token and create all the

folders in advance (e.g., “SQLData\%Year%” and create SQLData\2017\, SQLData\2018\, etc.).

In Minion CheckDB, the table Minion.CheckDBSettingsDB:

 PreferredDBName

 RemoteJobName

Custom Inline Tokens
We do have a few guidelines for creating your own tokens:

 Naming DynamicName: We recommend you do not include any special symbols – only alphanumeric

characters. We also recommend against using the underscore symbol.

 Defining ParseMethod: To be consistent and avoid anomalies, use @ExecutionDateTime instead of

GetDate() (or SYSDATETIME(), or CURRENT_TIMESTAMP, or any of the others).

 Uniqueness: Be aware that there is a unique constraint on DynamicName and IsActive; so you can only

have one active “Date”, and one inactive “Date” (as an example).

 IsCustom: Set IsCustom = 1 for your custom dynamic names.

IMPORTANT: Custom inline tokens must be surrounded by pipes, not percent signs.

Inline Token Internals
The shorthand for this section looks like this: Tokens in settings tables -> MB stored procedures ->

Minion.DBMaintInlineTokenParse stored procedure -> Minion.DBMaintInlineTokens table.

Multiple tables have fields that accept Inline Tokens. As a part of normal (or manual) backup operations,

stored procedures in the following list must access these fields and have the tokens translated:

86

 Minion.BackupDB

 Minion.BackupFileAction

 Minion.BackupRestoreDB

 Minion.BackupRestoreMoveLocationsGet

 Minion.BackupStmtGet

Each of these uses the stored procedure Minion.DBMaintInlineTokenParse to parse the token into its value.

The DBMaintInlineTokenParse, of course, gets the token definition from the table

Minion.DBMaintInlineTokens.

“How To” Topics: Basic Configuration

How To: Configure settings for a single database
Default settings for the whole system are stored in the Minion.BackupSettings table. To specify settings for a

specific database that override those defaults (for that database), insert a row for that database to the

Minion.BackupSettings table. For example, we want to fine tune settings for DB1, so we use the following

statement:

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [ShrinkLogOnLogBackup] ,
 [MinSizeForDiffInGB] ,
 [DiffReplaceAction] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 1433 AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,

87

 50 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 90 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,
 1 AS [ShrinkLogOnLogBackup] ,
 20 AS [MinSizeForDiffInGB] ,
 'Log' AS [DiffReplaceAction] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 'DB1 is high priority; better backup order and history retention.' AS [Comment];

Minion Backup comes with a utility stored procedure, named Minion.CloneSettings, for easily creating insert

statements like the example above. For more information, see the “Minion.CloneSettings” section below.

IMPORTANT:

 If you enter a row for a database and/or backup type, that row completely overrides the settings for that

particular database (and/or backup type). For example, the row inserted above will be the source of all

settings – even if they are NULL – for all DB1 database backups. For more information, see the

“Configuration Settings Hierarchy” section above.

 Follow the Configuration Settings Hierarchy Rule: If you provide a database-specific row, be sure that all

backup types are represented in the table for that database. For example, if you insert a row for

DBName=’DB1’, BackupType=’Full’, then also insert a row for DBName=’DB1’, BackupType=’All’ (or

individual rows for DB1 log and DB1 differential backups). Once you configure the settings context at the

database level, the context stays at the database level (and not the default ‘MinionDefault’ level).

 A quick note about log backups: In SQL Server, a database must have had a full backup before a log

backup can be taken. Minion Backup prevents this; if you try to take a log backup, and the database

doesn't have a restore base, then the system will remove the log backup from the list. MB will not attempt

to take a log backup until there's a full backup in place. Though it may seem logical to perform a full

backup instead of a full, we do not do this, because log backups can be taken very frequently; we don't

want to make what is usually a quick operation into a very long operation.

How To: Configure settings for all databases
When you first install an instance of Minion Backup, default settings for the whole system are stored in the

Minion.BackupSettings table row where DBName=’MinionDefault’ and BackupType=’All’. To change settings

for all databases on the server, update the values for that default row.

88

For example, you might want to verify backups after the batch (after all backups for one operation are

complete):

UPDATE Minion.BackupSettings
SET Verify='AfterBatch'
WHERE DBName = 'MinionDefault'
 AND BackupType = 'All';

WARNING: “Verify” for backups must be used with caution. Verifying backups can take a long time, and you

could hold up subsequent backups while running the verify. If you would like to run verify, we recommend

using AfterBatch.

Over time, you may have entered one or more database-specific rows for individual databases and/or backup

types (e.g., DBName=’DB1’ and BackupType=’Full’). In this case, the settings in the default

“MinionDefault/All” row do not apply to those database/backup types. You can of course update the entire

table – both the default row, and any database-specific rows – with new settings, to be sure that the change

is universal for that instance. So, if you want the history retention days to be 90 (instead of the default, 60

days), run the following:

UPDATE Minion.BackupSettings
SET HistRetDays = 90;

How To: Back up databases in a specific order
You can choose the order in which databases will be maintained. For example, let’s say that you want your

databases backed up in this order:

1. [YourDatabase] (it’s the most important database on your system)

2. [Semi]

Minion Enterprise Hint

Minion Enterprise, in conjunction with Minion Backup, can manage – not just gather and

view, but manage – backup settings across all SQL Server instances, centrally. One classic

case: you can change backup location for hundreds of servers, using a simple UPDATE

statement in the Minion Enterprise central repository.

See www.MinionWare.net for more information, or

email us today at Support@MidnightDBA.com for a demo!

http://www.minionware.net/
mailto:Support@MidnightDBA.com

89

3. [Lame]

4. [Unused]

In this case, we would insert a row into the Minion.BackupSettings table for each one of the databases,

specifying either GroupDBOrder, GroupOrder, or both, as needed.

NOTE: For GroupDBOrder and GroupOrder, higher numbers have a greater “weight” - they have a

higher priority - and will be backed up earlier than lower numbers. Note also that these columns are

TINYINT, so weighted values must fall between 0 and 255.

NOTE: When you insert a row for a database, the settings in that row override all of the default

backup settings for that database. So, inserting a row for [YourDatabase] means that ONLY backup

settings from that row will be used for [YourDatabase]; none of the default settings will apply to

[YourDatabase].

NOTE: Any databases that rely on the default system-wide settings (represented by the row where

DBName=’MinionDefault’) will be backed up according to the values in the MinionDefault columns

GroupDBOrder and GroupOrder. By default, these are both 0 (lowest priority), and so non-specified

databases would be backed up last.

Because we have so few databases in this example, the simplest method is to assign the heaviest “weight” to

YourDatabase, and lesser weights to the other databases, in decreasing order. In our example, we would

insert four rows. Note that, for brevity, we use far fewer columns in our examples than you would need in an

actual environment:

-- Insert BackupSettings row for [YourDatabase], GroupOrder=255 (first)
INSERT INTO [Minion].[BackupSettings]
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [LogLoc] ,
 [HistRetDays] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB]
)
SELECT 'YourDatabase' AS [DBName] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 255 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [ShrinkLogThresholdInMB] ,
 0 AS [ShrinkLogSizeInMB];

90

-- Insert BackupSettings row for “Semi”, GroupOrder=150 (after [YourDatabase])
INSERT INTO [Minion].[BackupSettings]
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [LogLoc] ,
 [HistRetDays] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB]
)
SELECT 'Semi' AS [DBName] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 150 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [ShrinkLogThresholdInMB] ,
 0 AS [ShrinkLogSizeInMB];

-- Insert BackupSettings row for “Lame”, GroupOrder=100 (after “Semi”)
INSERT INTO [Minion].[BackupSettings]
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [LogLoc] ,
 [HistRetDays] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB]
)
SELECT 'Lame' AS [DBName] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 100 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [ShrinkLogThresholdInMB] ,
 0 AS [ShrinkLogSizeInMB];

91

-- Insert BackupSettings row for “Unused”, GroupOrder=50 (after [Lame])
INSERT INTO [Minion].[BackupSettings]
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [LogLoc] ,
 [HistRetDays] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB]
)
SELECT 'Unused' AS [DBName] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 50 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [ShrinkLogThresholdInMB] ,
 0 AS [ShrinkLogSizeInMB];

For a more complex ordering scheme, we could divide databases up into groups, and then order the backups

both by group, and within each group. The pseudocode for this example might be:

 Insert rows for databases YourDatabase and Semi, both with GroupOrder = 200

o Row YourDatabase: GroupDBOrder = 255

o Row Semi: GroupDBOrder = 100

 Insert rows for databases Lame and Unused, both with GroupOrder = 100

o Row YourDatabase: Lame = 255

o Row Semi: Unused = 100

The resulting backup order would be as follows:

1. YourDatabase

2. Semi

3. Lame

4. Unused

How To: Change backup schedules
Minion Backup offers you a choice of scheduling options:

 You can use the Minion.BackupSettingsServer table to configure flexible backup scheduling

scenarios;

 Or, you can use the traditional approach of one job per backup schedule;

92

 Or, you can use a hybrid approach that employs a bit of both options.

For more information about backup schedules, see “About: Backup Schedules”.

Table based scheduling
When Minion Backup is installed, it uses a single backup job to run the stored procedure

Minion.BackupMaster with no parameters, every 30 minutes. When the Minion.BackupMaster procedure

runs without parameters, it uses the Minion.BackupSettingsServer table to determine its runtime parameters

(including the schedule of backup jobs per backup type). This is how MB operates by default, to allow for the

most flexible backup scheduling with as few jobs as possible.

This document explains table based scheduling in the Quick Start section “Table based scheduling”.

Parameter based scheduling (traditional approach)
Other SQL Server native backup solutions traditionally use one backup job per schedule. That usually means

at a minimum: one job for system database full backups, one job for user database full backups, and one job

for log backups.

To use the traditional approach of one job per backup schedule:

1. Disable or delete the MinionBackup-Auto job.

2. Configure new jobs for each backup schedule scenario you need.

Note: We highly recommend always using the Minion.BackupMaster stored procedure to run backups. While

it is possible to use Minion.BackupDB to execute backups, doing so will bypass much of the configuration and

logging benefits that Minion Backup was designed to provide.

Run Minion.BackupMaster with parameters: The procedure takes a number of parameters that are specific

to the current maintenance run. (For full documentation of Minion.BackupMaster parameters, see the

“Minion.BackupMaster” section.)

To configure traditional, one-job-per-schedule backups, you might configure three new jobs:

 MinionBackup-SystemFull, to run full backups for system databases nightly at 9pm. The job step should

be something similar to:

EXEC Minion.BackupMaster @DBType = 'System'
 , @BackupType = 'Full'
 , @StmtOnly = 0
 , @ReadOnly = 1;

 MinionBackup-UserFull, to run full backups for user databases nightly at 10pm. The job step should be

something similar to:

EXEC Minion.BackupMaster @DBType = 'User'
 , @BackupType = 'Full'
 , @StmtOnly = 0
 , @ReadOnly = 1;

93

 MinionBackup-Log, to run log backups for user databases hourly. The job step should be something

similar to:

EXEC Minion.BackupMaster @DBType = 'User'
 , @BackupType = 'Log'
 , @StmtOnly = 0
 , @ReadOnly = 2;

Hybrid scheduling
It is possible to use both methods – table based scheduling, and traditional scheduling – by one job that runs

Minion.BackupMaster with no parameters, and one or more jobs that run Minion.BackupMaster with

parameters.

We recommend against this, as hybrid scheduling has little advantage over either method, and increases the

complexity of your backup scenario. However, it may be that there are as yet unforeseen situations where

hybrid backup scheduling might be very useful.

How To: Generate back up statements only
Sometimes it is useful to generate backup statements and run them by hand, either individually or in small

groups. To generate backup statements without running the statements, run the procedure

Minion.BackupMaster with the parameter @StmtOnly set to 1.

Example code - The following code will generate full backup statements for all system databases.

EXEC [Minion].[BackupMaster]
 @DBType = 'System' ,
 @BackupType = 'Full',
 @Include = 'All',
 @StmtOnly = 1;

Running Minion.BackupMaster with @StmtOnly=1 will generate a list of Minion.BackupDB execution

statements, all set to @StmtOnly=1. Running these Minion.BackupDB statements will generate the “BACKUP

DATABASE” or “BACKUP LOG” statements.

This is an excellent way to discover what settings Minion Backup will use for a particular database (or set of

databases). For more information – and another method – for determining the settings Minion Backup will

use, see the “Discussion” portion of the “Minion.BackupStmtGet” section below.

How To: Back up only databases that are not marked READ_ONLY
Using the Minion.BackupMaster stored procedure, you can choose whether or not to include READ_ONLY

databases in the backup routine:

 @ReadOnly = 1 will include READ_ONLY databases in the backup routine. This is the default option.

 @ReadOnly = 2 will NOT include READ_ONLY databases in the backup routine.

94

 @ReadOnly = 3 will ONLY include READ_ONLY databases in the backup routine.

To backup only databases that are not marked READ_ONLY, run the procedure Minion.BackupMaster with

the parameter @ReadOnly set to 2. For example, to back up only the read/write user databases, use the

following call:

EXEC [Minion].[BackupMaster]
 @DBType = 'User' ,
 @BackupType = 'Full',
 @Include = 'All',
 @ReadOnly = 2;

To back up only the READ_ONLY databases, use the following call:

EXEC [Minion].[BackupMaster]
 @DBType = 'User' ,
 @BackupType = 'Full',
 @Include = 'All',
 @ReadOnly = 3;

How To: Include databases in backups
By default, Minion Backup is configured to back up all databases. As you fine tune your backup scenarios and

schedules, you may want to configure specific subsets of databases to be backed up with different options, or

at different times.

You can limit the set of databases to be backed up in a single operation via an explicit list, LIKE expressions, or

regular expressions. In the following two sections, we will work through the way to do this first via table

based scheduling, and then in traditional scheduling.

NOTE: The use of the regular expressions include and exclude features are not supported in SQL Server 2005.

Include databases in table based scheduling
Table based scheduling pulls backup schedules and other options from the Minion.BackupSettingsServer

table. In this table, you have the following options for configuring which databases to include in backup

operations:

 To include all databases in a backup operation, set Include = ‘All’ (or NULL) for the relevant row(s).

 To include a specific list of databases, set Include = a comma delimited list of those database names,

and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To include databases based on regular expressions, set Include = ‘Regex’. Then, configure the regular

expression in the Minion.DBMaintRegexLookup table.

We will use the following sample data as we demonstrate each of these options. This is a subset of

Minion.BackupSettingsServer columns:

95

ID DBType BackupType Day BeginTime EndTime Include Exclude
1 System Full Daily 22:00:00 22:30:00 NULL NULL

2 User Full Friday 23:00:00 23:30:00 DB1,DB2 NULL
3 User Full Saturday 23:00:00 23:30:00 DB10% NULL

4 User Full Sunday 23:00:00 23:30:00 Regex NULL
5 User Log Daily 00:00:00 23:59:00 NULL NULL

And, these is the contents of the Minion.DBMaintRegexLookup table:

Action MaintType Regex
Include Backup DB[3-5](?!\d)

Based on this data, Minion Backup would perform backups as follows:

 Full system database backups run daily at 10pm.

 Full user database backups for DB1 and DB2 run Fridays at 11pm.

 Full user database backups for all databases beginning with “DB10” run Saturdays at 11pm.

 Full user database backups for databases included in the regular expressions table

(Minion.DBMaintRegexLookup), run Sundays at 11pm. (This particular regular expression includes DB3,

DB4, and DB5, but does not include any database with a 2 digit number at the end, such as DB35.)

 User log backups run daily (as often as the backup job runs).

Note that you can create more than one regular expression in Minion.DBMaintRegexLookup. For example:

 To use Regex to include DB3, DB4, and DB5: insert a row like the example above, where Regex = ’DB[3-

5](?!\d)’.

 To use Regex to include any database beginning with the word “Market” followed by a number: insert

a row where Regex=’Market[0-9]’.

 With these two rows, a backup operation with @Include=’Regex’ will backup both the DB3-DB5

databases, and the databases Marketing4 and Marketing308 (and similar others, if they exist).

Include databases in traditional scheduling
We refer the common practice of configuring backups in separate jobs (to allow for multiple schedules) as

“traditional scheduling”. Shops that use traditional scheduling will run Minion.BackupMaster with

parameters configured for each particular backup run.

You have the following options for configuring which databases to include in backup operations:

 To include all databases in a backup operation, set @Include = ‘All’ (or NULL).

 To include a specific list of databases, set @Include = a comma delimited list of those database names,

and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To include databases based on regular expressions, set @Include = ‘Regex’. Then, configure the regular

expression in the Minion.DBMaintRegexLookup table.

The following example executions will demonstrate each of these options.

96

First, to run full user backups on all databases, we would execute Minion.BackupMaster with these (or

similar) parameters:

-- @Include = NULL for all databases
EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 1,
 @Include = NULL,
 @Exclude=NULL,
 @ReadOnly=1;

To include a specific list of databases:

-- @Include = a specific database list (YourDatabase, all DB1% DBs, and DB2)
EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 1,
 @Include = 'YourDatabase,DB1%,DB2',
 @Exclude=NULL,
 @ReadOnly=1;

To include databases based on regular expressions, first insert the regular expression into the

Minion.DBMaintRegexLookup table, and then execute Minion.BackupMaster with @Include=’Regex’:

INSERT INTO Minion.DBMaintRegexLookup
 ([Action] ,
 [MaintType] ,
 [Regex]
)
SELECT 'Include' AS [Action] ,
 'Backup' AS [MaintType] ,
 'DB[3-5](?!\d)' AS [Regex]
-- @Include = 'Regex' for regular expressions
EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 1,
 @Include = 'Regex',
 @Exclude=NULL,
 @ReadOnly=1;

For information on Include/Exclude precedence (that applies to both the Minion.BackupSettingsServer

columns, and to the parameters), see “Include and Exclude Precedence”.

97

How To: Exclude databases from backups
By default, Minion Backup is configured to back up all databases. As you fine tune your backup scenarios and

schedules, you may want to exclude certain databases from scheduled backup operations, or even from all

backup operations.

You can exclude databases from all backup operations via the Exclude column in Minion.BackupSettings. Or,

you can exclude databases from a backup operation via an explicit list, LIKE expressions, or regular

expressions. In the following three sections, we will work through Exclude=1, then excluding databases from

table based scheduling, and finally excluding from traditional scheduling.

NOTE: The use of the regular expressions include and exclude features are not supported in SQL Server 2005.

Exclude a database from all backups
To exclude a database – for example, DB13 – from all backups, just insert a database-specific row for that

database into Minion.BackupSettings, with BackupType=All and Exclude=1:

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [BackupType] ,
 [Exclude] ,
 [LogLoc] ,
 [HistRetDays] ,
 [IsActive]
)
SELECT 'DB13' AS [DBName] ,
 'All' AS [BackupType] ,
 1 AS [Exclude] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [IsActive] ;

This insert has a bare minimum of options, as the row is only intended to exclude DB13 from the backup

routine. We recommend configuring individual database rows with the full complement of settings if there is

a chance that backups may be re-enabled for that database in the future.

IMPORTANT: Exclude=1 can be overridden by an explicit Include. For more information, see “Include and

Exclude Precedence”.

Exclude databases in table based scheduling
Table based scheduling pulls backup schedules and other options from the Minion.BackupSettingsServer

table. In this table, you have the following options for configuring which databases to exclude from backup

operations:

 To exclude a specific list of databases, set Exclude = a comma delimited list of those database names,

and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

98

 To exclude databases based on regular expressions, set Exclude = ‘Regex’. Then, configure the regular

expression in the Minion.DBMaintRegexLookup table.

We will use the following sample data as we demonstrate each of these options. This is a subset of

Minion.BackupSettingsServer columns:

ID DBType BackupType Day BeginTime EndTime Include Exclude
1 System Full Daily 22:00:00 22:30:00 NULL NULL

2 User Full Friday 23:00:00 23:30:00 NULL DB1,DB2
3 User Full Saturday 23:00:00 23:30:00 NULL DB10%

4 User Full Sunday 23:00:00 23:30:00 NULL Regex

5 User Log Daily 00:00:00 23:59:00 NULL NULL

And, these is the contents of the Minion.DBMaintRegexLookup table:

Action MaintType Regex

Exclude Backup DB[3-5](?!\d)

Based on this data, Minion Backup would perform backups as follows:

 Full system database backups run daily at 10pm.

 Full user database backups for all databases – except DB1 and DB2 – run Fridays at 11pm.

 Full user database backups for all databases – except those beginning with “DB10” – run Saturdays at

11pm.

 Full user database backups for all databases – except for those excluded via the regular expressions table

(Minion.DBMaintRegexLookup) – run Sundays at 11pm. (This particular regular expression excludes DB3,

DB4, and DB5 from backups, but does not exclude any database with a 2 digit number at the end, such as

DB35.)

 User log backups run daily (as often as the backup job runs).

Note that you can create more than one regular expression in Minion.DBMaintRegexLookup. For example:

 To use Regex to exclude DB3, DB4, and DB5: insert a row like the example above, where Regex = ’DB[3-

5](?!\d)’.

 To use Regex to exclude any database beginning with the word “Market” followed by a number: insert

a row where Regex=’Market[0-9]’.

 With these two rows, a backup operation with @Exclude=’Regex’ will exclude both the DB3-DB5

databases, and the databases Marketing4 and Marketing308 (and similar others, if they exist) from

backups.

Exclude databases in traditional scheduling
We refer the common practice of configuring backups in separate jobs (to allow for multiple schedules) as

“traditional scheduling”. Shops that use traditional scheduling will run Minion.BackupMaster with

parameters configured for each particular backup run.

99

You have the following options for configuring which databases to exclude from backup operations:

 To exclude a specific list of databases, set @Exclude = a comma delimited list of those database names,

and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To exclude databases based on regular expressions, set @ Exclude = ‘Regex’. Then, configure the

regular expression in the Minion.DBMaintRegexLookup table.

The following example executions will demonstrate each of these options.

First, to exclude a specific list of databases:

-- @Exclude = a specific database list (YourDatabase, all DB1% DBs, and DB2)
EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 1,
 @Include = NULL,
 @Exclude='YourDatabase,DB1%,DB2',
 @ReadOnly=1;

To exclude databases based on regular expressions, first insert the regular expression into the

Minion.DBMaintRegexLookup table, and then execute Minion.BackupMaster with @Exclude=’Regex’:

INSERT INTO Minion.DBMaintRegexLookup
 ([Action] ,
 [MaintType] ,
 [Regex]
)
SELECT 'Exclude' AS [Action] ,
 'Backup' AS [MaintType] ,
 'DB[3-5](?!\d)' AS [Regex]
-- @Exclude = 'Regex' for regular expressions
EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 1,

@Include = NULL,
 @Exclude='Regex',
 @ReadOnly=1;

For information on Include/Exclude precedence (that applies to both the Minion.BackupSettingsServer

columns, and to the parameters), see “Include and Exclude Precedence”.

How To: Run code before or after backups
You can schedule code to run before or after backups, using precode and postcode. Pre- and postcode can be

configured:

100

 Before or after database backups (either for one database, or for each of several databases in an

operation)

 Before or after the entire backup operation

NOTE: Unless otherwise specified, pre- and postcode will run in the context of the Minion Backup’s database

(wherever the Minion Backup objects are stored); it was a design decision not to limit the code that can be

run to a specific database. Therefore, always use “USE” statements – or, for stored procedures, three-part

naming convention – for pre- and postcode.

Database precode and postcode
Database precode and postcode run before and after an individual database; or, if there are multiple

databases in the backup batch, before and after each database backup. Database precode and postcode

presents several options:

 run code before or after a single database

 run code before or after each and every database

 run code before or after each of a few databases

 run code before or after all but a few databases

To run code before or after a single database, insert a row for the database into Minion.BackupSettings.

Populate the column DBPreCode to run code before the backup operations for that database; populate the

column DBPostCode to run code before the backup operations after that database. For example:

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DBPreCode] ,
 [DBPostCode] ,
 [DynamicTuning] ,
 [Verify] ,
 [ShrinkLogOnLogBackup] ,
 [ShrinkLogThresholdInMB] ,
 [ShrinkLogSizeInMB] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,

101

 [Comment]
)
SELECT 'DB5' AS [DBName] ,
 NULL AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 0 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 'EXEC master.dbo.GenericSP1;' AS [DBPreCode] ,
 'EXEC master.dbo.GenericSP2;' AS [DBPostCode] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [ShrinkLogThresholdInMB] ,
 0 AS [ShrinkLogSizeInMB] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

To run code before or after each and every database, update the MinionDefault row AND every database-

specific rows (if any) in Minion.BackupSettings, populating the column DBPreCode or DBPostCode. For

example:

UPDATE [Minion].[BackupSettings]
SET DBPreCode = 'EXEC master.dbo.GenericSP1;' ,
 DBPostCode = 'EXEC master.dbo.GenericSP1;'
WHERE DBName = 'MinionDefault'
 AND BackupType = 'All';

UPDATE [Minion].[BackupSettings]
SET DBPreCode = 'EXEC master.dbo.GenericSP1;',
 DBPostCode = 'EXEC master.dbo.GenericSP1;'
WHERE DBName = 'DB5'

AND BackupType = 'All';

To run code before or after each of a few databases, insert one row for each of the databases into

Minion.BackupSettings, populating the DBPreCode column and/or DBPostCode column as appropriate.

To run code before or after all but a few databases, update the MinionDefault row in

Minion.BackupSettings, populating the DBPreCode column and/or the DBPostCode column as appropriate.

102

This will set up the execution code for all databases. Then, to prevent that code from running on a handful of

databases, insert a row for each of those databases to Minion.BackupSettings, and keep the DBPreCode and

DBPostCode columns set to NULL.

For example, if we want to run the stored procedure dbo.SomeSP before each database except databases

DB1, DB2, and DB3, we would:

1. Update row in Minion.BackupSettings for “MinionDefault”, setting PreCode to ‘EXEC

dbo.SomeSP;’

2. Insert a row to Minion.BackupSettings for [DB1], establishing all appropriate settings, and setting

DBPreCode to NULL.

3. Insert a row to Minion.BackupSettings for [DB2], establishing all appropriate settings, and setting

DBPreCode to NULL.

4. Insert a row to Minion.BackupSettings for [DB3], establishing all appropriate settings, and setting

DBPreCode to NULL.

Note: The Minion.BackupSettings columns DBPreCode and DBPostCode are in effect whether you are using

table based scheduling – that is, running Minion.BackupMaster without parameters – or using parameter

based scheduling. (This is not the case for batch precode and postcode, which the next section covers.)

Batch precode and postcode
Batch precode and postcode run before and after an entire backup operation.

To run code before or after a backup batch, update (or insert) the appropriate row in

Minion.BackupSettingsServer. In that row, populate the BatchPreCode column to run code before the backup

operation; and populate the column BatchPostCode to run code after the backup operation. For example:

UPDATE Minion.BackupSettingsServer
SET BatchPreCode = 'EXEC master.dbo.BackupPrep;' ,
 BatchPostCode = 'EXEC master.dbo.BackupCleanup;'
WHERE DBType = 'User'
 AND BackupType = 'Full'
 AND Day = 'Saturday';

IMPORTANT: The Minion.BackupSettingServer columns BatchPreCode and BatchPostCode are only in effect

for table based scheduling – that is, running Minion.BackupMaster without parameters. If you use parameter

based scheduling, the only way to enact batch precode or batch postcode is with additional job steps.

How To: Configure backup file retention
Minion Backup deletes old backup files based on configured settings. Set the backup retention in hours in the

Minion.BackupSettingsPath table, using the RetHrs (“retention in hours”) field. You can either modify the

default “MinionDefault” row, or insert your own database-specific entry:

INSERT INTO Minion.BackupSettingsPath

103

 ([DBName] ,
 [isMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [PathOrder] ,
 [IsActive]
)
SELECT 'DB1' AS [DBName] ,
 0 AS [isMirror] ,
 'All' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'C:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,

 NULL AS [ServerLabel] ,
 48 AS [RetHrs] ,
 0 AS [PathOrder] ,
 1 AS [IsActive];

Note: This new RetHrs value does not affect the retention period of existing backup files.

For more information, see “About: Backup file retention”.

How to: configure the missing backups schedule
Minion Backup’s “missing backups” feature lets you schedule a run to check for incomplete backups from the

last run, for a given database type and backup type (e.g., ‘User’, ‘Diff’). So for example, if three out of 28 full

backups fail at midnight, a “missing backup” run scheduled for 4:00 AM will retry those three failed backups.

Minion Enterprise Hint

Minion Enterprise comes with a suite of queries to pull valuable information. For example,

you can easily query to find out how much space is saved when you set backup retention

to two days instead of four; or how much space backups take up per server. And this

information is available not just for one server, but for your entire enterprise.

See www.MinionWare.net for more information, or

email us today at Support@MidnightDBA.com for a demo!

http://www.minionware.net/
mailto:Support@MidnightDBA.com

104

The Minion.BackupSettingsServer includes a sample row – the Include=’Missing’ row, which is inactive by

default – to check for missing differential backups.

Optionally, you can also execute a “missing” backup run manually.

To schedule a regular run for missing backups
You can either edit and activate the sample “missing” backup row in Minion.BackupSettingsServer, or insert

one or more additional rows.

Let’s edit the sample “missing” row. We will change it to “Full” backup type, activate the row, and widen the

begin and end time – this is so that if the primary backups run long, the “Missing” backup run can begin any

time before 6:00 AM:

UPDATE Minion.BackupSettingsServer
SET BackupType = 'Full'
 , BeginTime = '02:00:00'
 , EndTime = '06:00:00'
 , IsActive = 1
WHERE BackupType = 'Diff'
 AND [Include] = 'Missing'
 AND IsActive = 0;

Or, we can insert a “missing” row for full backups, and one for differential backups:

INSERT INTO Minion.BackupSettingsServer
 (DBType , BackupType , Day , ReadOnly , BeginTime , EndTime
 , MaxForTimeframe , Include , SyncSettings , SyncLogs , IsActive , Comment)
VALUES ('User' -- DBType
 , 'Full' -- BackupType
 , 'Sunday' -- Day
 , 1 -- ReadOnly
 , '02:00:00' -- BeginTime
 , '05:00:00' -- EndTime
 , 1 -- MaxForTimeframe
 , 'Missing' -- Include
 , 0 -- SyncSettings
 , 0 -- SyncLogs
 , 1 -- IsActive
 , 'Missing Backups-FULL' -- Comment
),
('User' -- DBType
 , 'Diff' -- BackupType
 , 'Daily' -- Day
 , 1 -- ReadOnly
 , '06:00:00' -- BeginTime
 , '08:00:00' -- EndTime
 , 1 -- MaxForTimeframe
 , 'Missing' -- Include

105

 , 0 -- SyncSettings
 , 0 -- SyncLogs
 , 1 -- IsActive
 , 'Missing Backups-DIFF' -- Comment
);

To run missing backups manually
To run missing backups manually, execute Minion.BackupMaster with @Include=’Missing’. So to rerun

missing full backups for user databases:

EXEC Minion.BackupMaster
 @DBType = 'User',
 @BackupType = 'Full',
 @StmtOnly = 0,
 @Include = 'missing';

How to: Set up Restore Profiles
As of version 1.3, Minion Backup allows flexible configuration of manual restores. Note that

scheduled/automatic restores are slated for an upcoming version.

The basic process to set up a restore profile is:

1. Have backups: Make sure Minion Backup is running on the source server.

2. Configure paths: Configure restore paths in the restore paths table

(Minion.BackupRestoreSettingsPath).

3. Configure tuning: Optionally, configure settings in the restore tuning table

(Minion.BackupRestoreTuningThresholds).

4. Generate statements: Run the procedure “Minion.BackupRestoreDB” to generate the restore

statements.

5. Execute statements: Run generated statements on the target instance.

Let’s take an example: We need to restore DB1 from YourServer to OtherServer.

Have backups
Minion Backup must be up and running on the source server (YourServer). The restore process will use full

backups, and data from the Minion Backup logs, to generate the appropriate statements.

Configure paths
Minion.BackupRestoreSettingsPath comes installed with a default row, with DBName = ‘MinionDefault’ and

Servername = ‘localhost’. This enables you to generate restore statements without any additional

configuration, and gives an exmple of restore path configuration.

You can either rely on this default row, modify it, or configure one or more restore paths in the restore paths

table. In this example, we’ll set up a database specific configuration, with FileType=’FileType’ and TypeName

= ‘All’:

106

INSERT INTO Minion.BackupRestoreSettingsPath
 (DBName , ServerName , RestoreType , FileType , TypeName
 , RestoreDrive , RestorePath , RestoreFileName , RestoreFileExtension , BackupLocation
 , RestoreDBName , ServerLabel , PathOrder , IsActive , Comment
)
VALUES (N'DB1' -- DBName
 , 'OtherServer' -- ServerName
 , 'Full' -- RestoreType
 , 'FileType' -- FileType
 , 'All' -- TypeName
 , 'E:\' -- RestoreDrive
 , 'SQLServer\Files\' -- RestorePath
 , N'%DBName%%Date%' -- RestoreFileName
 , 'MinionDefault' -- RestoreFileExtension
 , NULL -- BackupLocation
 , N'%DBName%-Nightly-Restore-from-%Servername%' -- RestoreDBName
 , NULL -- ServerLabel
 , 0 -- PathOrder
 , 1 -- IsActive
 , 'Nightly restore DB1 to OtherServer.' -- Comment
);

Note that FileType can be either “FileType” or “FileName”. In other words, we can set restore path

information for a specific file name, a file type, or both. As with all Minion structural hierarchies, the more

specific trumps the less specific; so, if for DB9 you have FileType / All and FileName / DB9_log, the settings

from FileName / DB9_log will apply to the file with that name, and the FileType / All settings will apply to all

other files.

Configure tuning
If you like, you can choose to configure tuning settings (including whether or not to include WITH REPLACE)

for your restore in Minion.BackupRestoreTuningThresholds.

Note that since this is not a required step, you are not required to have a “zero row” (as you are in

Minion.BackupTuningThresholds); if you wish, your tuning settings might only kick in starting when database

is above 100 GB.

We wish to include “WITH REPLACE”, and specify some other settings, and so we create a configuration for

OtherServer / DB1 as follows:

INSERT INTO Minion.BackupRestoreTuningThresholds
 (ServerName , DBName , RestoreType , SpaceType , ThresholdMeasure
 , ThresholdValue , Buffercount , MaxTransferSize , BlockSize , Replace
 , WithFlags , BeginTime , EndTime , DayOfWeek , IsActive , Comment
)
VALUES ('OtherServer' -- ServerName
 , N'DB1' -- DBName
 , 'Full' -- RestoreType

107

 , 'DataAndIndex' -- SpaceType
 , 'GB' -- ThresholdMeasure
 , 0 -- ThresholdValue
 , 350 -- Buffercount
 , 0 -- MaxTransferSize
 , NULL -- BlockSize
 , 1 -- Replace
 , NULL -- WithFlags
 , NULL -- BeginTime
 , NULL -- EndTime
 , NULL -- DayOfWeek
 , 1 -- IsActive
 , 'DB1 restore to OtherServer' -- Comment
);

Generate statements
Run the procedure “Minion.BackupRestoreDB” with the @ServerName and @DBName parameters to

generate the restore statements.

EXEC Minion.BackupRestoreDB @ServerName = 'OtherServer', @DBName = 'DB1';

In our example, this will generate the following restore statement:

RESTORE DATABASE [DB1-Nightly-Restore-from-YourServer]
FROM DISK = '\\shrt\SQLBackups\YourServer\2016\20161107\DB1Full1of1.BAK'
WITH MOVE 'DB1' TO 'E:\SQLServer\Files\DB120161209.mdf',
 MOVE 'DB1_log' TO 'E:\SQLServer\Files\DB120161209.ldf',
 BUFFERCOUNT = 350, REPLACE;

Let’s do a quick analysis on this statement:

 The database name is [DB1-Nightly-Restore-from-YourServer], because in the restore path settings, we

specified , RestoreFileName = '%DBName%%Date%'. Those markers surrounded by percent signs are

called Inline Tokens (see: “About: Inline Tokens”).

 FROM DISK is populated using the last full backup for that database, as discovered in the Minion Backup

logs.

 The WITH MOVE section is populated using the FILELISTONLY output from that backup, and the drive,

path, filename, and extension settings we defined in Minion.BackupRestoreSettingsPath.

 The restore process added BUFFERCOUNT=350 and REPLACE due to the configuration in

Minion.BackupRestoreTuningThresholds.

Execute statements
Copy the statement generated from the Minion.BackupRestoreDB procedure, connect to the destination box

(OtherServer), and run the statement.

108

Additional options
Of course, you can also code a solution to automatically run the Stored Procedure, and run the generated

statements on the target box, but that’s outside the scope of this docuemntation for now. Check the

MinionWare Community Zone (http://minionware.net/CommunityZone/) to see if there are community-

created solutions for automatic restore. And of course, keep an eye out for future releases of Minion Backup!

“How To” Topics: Backup Mirrors and File Actions

How to: Set up mirror backups
SQL Server Enterprise edition allows you to back up to two locations simultaneously: the primary location and

the mirror location. This is not the same as striping a backup (where a single backup media set is placed

across several locations); a mirrored backup creates two independent backup media sets.

To configure mirrored backups:

 Enable mirrored backups in Minion.BackupSettings, using the Mirror field.

 Configure a backup mirror path in Minion.BackupSettingsPath, being sure to set isMirror = 1.

For example, to mirror full backups for database DB8, first enable mirrored backups for that database and

backup type. We will insert one row for DB8, BackupType=Full; and one row for DB8, BackupType=All, to

provide settings for DB8 diff and log backups (as explained in “The Configuration Settings Hierarchy Rule”.)

-- DB8 BackupType='All', to cover log and differential settings.
INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [ShrinkLogOnLogBackup] ,
 [MinSizeForDiffInGB] ,
 [DiffReplaceAction] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]

http://minionware.net/CommunityZone/

109

)
SELECT 'DB8' AS [DBName] ,
 NULL AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 50 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] , -- Disable mirrored log/diff backups for DB8
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 90 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,
 1 AS [ShrinkLogOnLogBackup] ,
 20 AS [MinSizeForDiffInGB] ,
 'Log' AS [DiffReplaceAction] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

-- DB8 BackupType='Full'; enable full mirrored backups.
INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [ShrinkLogOnLogBackup] ,
 [MinSizeForDiffInGB] ,
 [DiffReplaceAction] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB8' AS [DBName] ,

110

 NULL AS [Port] ,
 'Full' AS [BackupType] ,
 0 AS [Exclude] ,
 50 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 1 AS [Mirror] , -- Enable mirrored full backups for DB8
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 90 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,
 1 AS [ShrinkLogOnLogBackup] ,
 20 AS [MinSizeForDiffInGB] ,
 'Log' AS [DiffReplaceAction] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

Next, we configure a primary backup path in Minion.BackupSettingsPath for DB8. For this particular server,

we would like all mirrored backups to go to “M:\SQLMirrorBackups\”. So, we can simply implement a new

MinionDefault row where isMirror=1:

INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [IsMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
 SELECT 'MinionDefault' AS [DBName] ,
 1 AS [IsMirror] ,
 'All' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'M:\' AS [BackupDrive] ,
 'SQLMirrorBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,
 24 AS [RetHrs] ,
 0 AS [PathOrder] ,
 1 AS [IsActive] ,

111

 NULL AS [AzureCredential] ,
 'MinionDefault mirror row.' AS [Comment];

Note: If we did not want all mirrored backups going to the same location, we could just as easily have defined

the Minion.BackupSettingsPath with DBName=’DB1’.

Once these two steps are done, all full backups for DB8 will be mirrored backups, with the mirror backup files

going to M:\SQLMirrorBackups\. Minion Backup will manage these mirrored backup files just like the primary

files, deleting them once they have exceeded the retention period.

IMPORTANT: Mirrored backups are only supported in SQL Server Enterprise edition.

How to: Copy files after backup (single and multiple locations)
As part of your backup routine, you can choose to copy your backup files to multiple locations, move your

backup files to a location, or both. This section will walk you through the steps of setting up file copy

operations. For more information, see the section “About: Copy and move backup files”.

Note: Currently, Minion Backup can't copy or move files to or from Microsoft Azure Blobs. However, you can

do a primary backup to an Azure Blob.

The basic steps to configure copy operations for backup files are:

1. Set the FileAction and FileActionTime fields in Minion.BackupSettings, for the appropriate

database(s) and backup type(s).

2. Insert one row per operation into the Minion.BackupSettingsPath table.

Note: If you specify one database-specific setting in the Minion.BackupSettings table, you must be sure that

all backup types are covered for that database. For example: one row for Full backups, and one row with

BackupType=’All’ to cover differential and log backups. The same rule exists for Minion.BackupSettingsPath.

For more information, see the FAQ section “Why must I supply values for all backup types for a database in

the settings tables?”

So for example, we can configure Minion Backup to copy the YourDatabase full backup file to two secondary

locations. First, set the FileAction and FileActionTime fields in Minion.BackupSettings, for the appropriate

database(s) and backup type(s):

1. Insert a row for YourDatabase into Minion.BackupSettings, in order to enable the file action

(“COPY”) and file action time (in this example, “AfterBatch”). Settings for the “YourDatabase”

full backup row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Full’

c. FileAction = ‘Copy’

d. FileActionTime = ‘AfterBatch’

112

2. Insert a BackupType=’All’ row into the Minion.BackupSettings table, to cover differential and

log backup operations. As we don’t wish to copy log or differential backups in this example, the

settings for this row (DBName= “YourDatabase”, BackupType=”All”) should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘All’

c. FileAction = NULL

d. FileActionTime = NULL

Note: The simplest way to insert a row to a table is to use the Minion.CloneSettings procedure to generate

an insert statement for that table, modify the statement to reflect the proper database and specifications,

and run it.

So, the contents of the Minion.BackupSettings table would look like this (some columns omitted for brevity):

DBName BackupType FileAction FileActionTime Comment

MinionDefault All NULL NULL Minion default. DO NOT REMOVE.

YourDatabase Full Copy AfterBatch YourDatabase database full backup.

YourDatabase All NULL NULL YourDatabase database - all
backups.

Second, insert one row per operation into the Minion.BackupSettingsPath table:

1. Insert a BackupType=’Full’ row into the Minion.BackupSettingsPath table, for the full backup

operation. Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Full’

c. BackupDrive = the name of your backup drive (e.g., ‘C:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘SQLBackups\’)

e. FileActionMethod=NULL

2. Insert a BackupType=’All’ row into the Minion.BackupSettingsPath table, to cover differential

and log backup operations. (The reason for this is, whenever you specify a database-specific

setting in Minion.BackupSettingsPath, all three basic backup types must be represented, one

way or another.) Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘All’

c. BackupDrive = the name of your backup drive (e.g., ‘C:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘SQLBackups\’)

e. FileActionMethod=NULL

3. Insert a BackupType=’Copy’ row into the Minion.BackupSettingsPath table, for the first copy

operation. Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Copy’

c. BackupDrive = the name of your first copy drive (e.g., ‘F:\’)

113

d. BackupPath = the full backup path, without the drive letter (e.g., ‘BackupCopies\’)

e. FileActionMethod=’XCOPY’ (Optional: see the note below for information about this field).

4. Insert a BackupType=’Copy’ row into the Minion.BackupSettingsPath table, for the second

copy operation. Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Copy’

c. BackupDrive = the name of your first copy drive (e.g., ‘Y:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘MoreBackupCopies\’)

e. FileActionMethod=’XCOPY’ (Optional: see the note below for information about this field).

Note: Minion Backup lets you choose what program you use to do your file copy and move operations. So, the

FileActionMethod field in Minion.BackupSettings has several valid inputs: NULL (same as COPY), COPY,

MOVE, XCOPY, ROBOCOPY, ESEUTIL. Note that “COPY” and “MOVE” use PowerShell COPY or MOVE

commands as needed.

So the contents of the Minion.BackupSettingsPath table would look like this (some columns omitted for

brevity):

DBName BackupTyp

e

BackupDriv

e

BackupPath FileActionMetho

d

Comment

MinionDefaul

t

All C:\ SQLBackups\ NULL Minion

default. DO
NOT

REMOVE.

YourDatabase Full C:\ SQLBackups\ NULL YourDatabas

e database
full backup.

YourDatabase All C:\ SQLBackups\ NULL YourDatabas
e database -

all backups.

YourDatabase Copy F:\ BackupCopies\ XCOPY YourDatabas
e database
full backup

copy #1.

YourDatabase Copy Y:\ MoreBackupCopies
\

XCOPY YourDatabas
e database
full backup

copy #2.

Note: You can view a log of copy and move operations in the Minion.BackupFiles table.

How to: Move files to a location after backup
As part of your backup routine, you can choose to copy your backup files to multiple locations, move your

backup files to a location, or both. This section will walk you through the steps of setting up a file move

operation. For more information, see the section “About: Copy and move backup files”.

114

Note: Currently, Minion Backup can't copy or move files to or from Microsoft Azure Blobs. However, you can

do a primary backup to an Azure Blob.

The basic steps to configure move operations for backup files are:

1. Set the FileAction and FileActionTime fields in Minion.BackupSettings, for the appropriate

database(s) and backup type(s).

2. Insert one row per operation into the Minion.BackupSettingsPath table.

Note: If you specify one database-specific setting in the Minion.BackupSettings table, you must be sure that

all backup types are covered for that database. For example: one row for Full backups, and one row with

BackupType=’All’ to cover differential and log backups. The same rule exists for Minion.BackupSettingsPath.

For more information, see the FAQ section “Why must I supply values for all backup types for a database in

the settings tables?”

So for example, we can configure Minion Backup to move the YourDatabase full backup file to one secondary

location. (You cannot move the backup file to more than one location; after the first move, the file will no

longer be in the original location!) First, set the FileAction and FileActionTime fields in

Minion.BackupSettings, for the appropriate database(s) and backup type(s):

1. Insert a row for YourDatabase into Minion.BackupSettings, in order to enable the file action

(“MOVE”) and file action time (in this example, “AfterBackup”). Settings for the “YourDatabase”

full backup row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Full’

c. FileAction = ‘Move’

d. FileActionTime = ‘AfterBackup’

2. Insert a BackupType=’All’ row into the Minion.BackupSettings table, to cover differential and

log backup operations. As we don’t wish to move log or differential backups in this example, the

settings for this row (DBName= “YourDatabase”, BackupType=”All”) should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘All’

c. FileAction = NULL

d. FileActionTime = NULL

Note: The simplest way to insert a row to a table is to use the Minion.CloneSettings procedure to generate

an insert statement for that table, modify the statement to reflect the proper database and specifications,

and run it.

So the contents of the Minion.BackupSettings table would look like this (some columns omitted for brevity):

DBName BackupType FileAction FileActionTime Comment

MinionDefault All NULL NULL Minion default. DO NOT REMOVE.

YourDatabase Full Move AfterBackup YourDatabase database full backup.

YourDatabase All NULL NULL YourDatabase database - all backups.

115

Second, insert one row per operation into the Minion.BackupSettingsPath table:

1. Insert a BackupType=’Full’ row into the Minion.BackupSettingsPath table, for the full backup

operation. Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Full’

c. BackupDrive = the name of your backup drive (e.g., ‘C:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘SQLBackups\’)

e. FileActionMethod=NULL

2. Insert a BackupType=’All’ row into the Minion.BackupSettingsPath table, to cover differential and

log backup operations. (The reason for this is, whenever you specify a database-specific setting in

Minion.BackupSettingsPath, all three basic backup types must be represented, one way or another.)

Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘All’

c. BackupDrive = the name of your backup drive (e.g., ‘C:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘SQLBackups\’)

e. FileActionMethod=NULL

3. Insert a BackupType=’Move’ row into the Minion.BackupSettingsPath table, for the move

operation. Settings for the “YourDatabase” row should include, in part:

a. DBName = ‘YourDatabase’

b. BackupType = ‘Move’

c. BackupDrive = the name of your first copy drive (e.g., ‘X:\’)

d. BackupPath = the full backup path, without the drive letter (e.g., ‘MovedBackups\’)

e. FileActionMethod=’ROBOCOPY’ (Optional: see the note below for information about this

field).

Note: Minion Backup lets you choose what program you use to do your file copy and move operations. So, the

FileActionMethod field in Minion.BackupSettings has several valid inputs: NULL (same as COPY), COPY,

MOVE, XCOPY, ROBOCOPY, ESEUTIL. Note that “COPY” and “MOVE” use PowerShell COPY or MOVE

commands as needed.

So, the contents of the Minion.BackupSettingsPath table would look like this (some columns omitted for

brevity):

DBName BackupType BackupDrive BackupPath FileActionMethod Comment

MinionDefault All C:\ SQLBackups\ NULL Minion
default. DO

NOT
REMOVE.

116

YourDatabase Full C:\ SQLBackups\ NULL YourDatabase
database full
backup.

YourDatabase All C:\ SQLBackups\ NULL YourDatabase
database - all

backups.

YourDatabase Move X:\ MovedBackups\ ROBOCOPY YourDatabase
database full
backup move.

How to: Copy and move backup files
As part of your backup routine, you can choose to copy your backup files to multiple locations, move your

backup files to a location, or both. This section will walk you through the steps of setting up a file copy and

move operation. For more information, see the section “About: Copy and move backup files”.

Note: Currently, Minion Backup can't copy or move files to or from Microsoft Azure Blobs. However, you can

do a primary backup to an Azure Blob.

The basic steps to configure move operations for backup files are:

1. Set the FileAction and FileActionTime fields in Minion.BackupSettings, for the appropriate

database(s) and backup type(s).

2. Insert one row per operation into the Minion.BackupSettingsPath table.

The two sections above – “How to: Copy files to a location after backup (single and multiple locations)” and

“How to: Move files to a location after backup” – detail the setup for copy and move operations. The only

difference for a scenario where you wish to copy and move a backup is that the FileAction field in

Minion.BackupSettings must be set to “MoveCopy” (instead of MOVE or COPY).

How to: Back up to multiple files in a single location
Minion Backup allows you to back up to multiple files. You can configure multi-file backups in just two steps:

1. Configure the number of backup files in the Minion.BackupTuningThresholds table.

2. Configure the backup location in the Minion.BackupSettingsPath table.

When this is configured, backups will proceed as defined: a database will back up to multiple files.

Let us take the example of backing up the DB1 database to four files, for full backups and differential

backups.

First, configure the number of backup files in Minion.BackupTuningThresholds. Log backups in this example

will be backed up to one file, while full and differential backups will be backed up to four. We can configure

this with two rows – one for BackupType=Log and NumberOfFiles=1, and one for BackupType=All and

NumberOfFiles=4:

117

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'All' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] ,
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 4 AS [NumberOfFiles] ,
 0 AS [Buffercount] ,
 0 AS [MaxTransferSize] ,
 NULL AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'DB1 full and differential.' AS [Comment];

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'Log' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] ,
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 1 AS [NumberOfFiles] ,
 0 AS [Buffercount] ,
 0 AS [MaxTransferSize] ,
 NULL AS [Compression] ,

118

 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'DB1 log.' AS [Comment];

Note that the code above omits BeginTime, EndTime, and DayOfWeek. These fields are optional; they may be

used to limit the days and times at which the threshold in question applies. As we want these new threshold

settings to apply at all time, we can comfortably leave these three fields NULL.

Next, configure the backup location. Determine whether the default location in Minion.BackupSettingsPath

(as configured in the row where DBName=’MinionDefault’ and BackupType=’All’) is correct for your backups.

For this example, we will say that the default location is not correct. So, we will insert a new row to configure

the new path:

INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [IsMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [FileActionMethod] ,
 [FileActionMethodFlags] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 0 AS [IsMirror] ,
 'All' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'E:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,
 24 AS [RetHrs] ,
 NULL AS [FileActionMethod] ,
 NULL AS [FileActionMethodFlags] ,
 0 AS [PathOrder] ,
 1 AS [IsActive] ,
 NULL AS [AzureCredential] ,
 'DB1 location.' AS [Comment];

Once the files and paths are configured, the DB1 backups will be placed as follows:

 DB1 full (or differential) backups will stripe to four files on the DB1 location.

119

 DB1 log backups have only one file defined, so Minion Backup backs up the DB1 log to one file on the

DB1 location.

The use of the Minion.BackupTuningThresholds table is detailed much more thoroughly in the “How to: Set

up dynamic backup tuning thresholds” section, and in the “Minion.BackupTuningThresholds” section.

And for more information on backup paths, see “Minion.BackupSettingsPath”.

How to: Back up to multiple locations
Minion Backup allows you to back up to multiple files, and to back those files up to multiple locations. You

can configure multi-location backups in just two steps:

1. Configure the number of backup files in the Minion.BackupTuningThresholds table.

2. Configure the backup locations in the Minion.BackupSettingsPath table.

When this is configured, backups will proceed as defined; multiple backup files will be placed on multiple

paths in a round robin fashion.

Let us take the example of backing up the DB1 database to four files on two separate drives, for full backups

and differential backups.

First, configure the number of backup files in Minion.BackupTuningThresholds. Log backups in this example

will be backed up to one file, while full and differential backups will be backed up to four. We can configure

this with two rows – one for BackupType=Log and NumberOfFiles=1, and one for BackupType=All and

NumberOfFiles=4:

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'All' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] ,
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 4 AS [NumberOfFiles] ,
 0 AS [Buffercount] ,

120

 0 AS [MaxTransferSize] ,
 NULL AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'DB1 full and differential.' AS [Comment];

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'Log' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] ,
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 1 AS [NumberOfFiles] ,
 0 AS [Buffercount] ,
 0 AS [MaxTransferSize] ,
 NULL AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'DB1 log.' AS [Comment];

Note that the code above omits BeginTime, EndTime, and DayOfWeek. These fields are optional; they may be

used to limit the days and times at which the threshold in question applies. As we want these new threshold

settings to apply at all time, we can comfortably leave these three fields NULL.

Next, configure the backup locations. We can define multiple backup paths for DB1, and additionally, order

the paths (using the PathOrder field) to determine which path will be use first. In this example, we will use

two rows to configure two paths:

INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [IsMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,

121

 [RetHrs] ,
 [FileActionMethod] ,
 [FileActionMethodFlags] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 0 AS [IsMirror] ,
 'All' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'E:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,
 24 AS [RetHrs] ,
 NULL AS [FileActionMethod] ,
 NULL AS [FileActionMethodFlags] ,
 50 AS [PathOrder] ,
 1 AS [IsActive] ,
 NULL AS [AzureCredential] ,
 'DB1 location 1.' AS [Comment];

INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [IsMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [FileActionMethod] ,
 [FileActionMethodFlags] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 0 AS [IsMirror] ,
 'All' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'F:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,
 24 AS [RetHrs] ,
 NULL AS [FileActionMethod] ,
 NULL AS [FileActionMethodFlags] ,
 10 AS [PathOrder] ,

122

 1 AS [IsActive] ,
 NULL AS [AzureCredential] ,
 'DB1 location 2.' AS [Comment];

Note that PathOrder is a weighted measure, meaning that higher numbers means higher precedence. DB1

location 1 has PathOrder of 50, while DB1 location 2 has a PathOrder of 10; so, DB1 location 1 will be selected

first.

Once the files and paths are configured, the DB1 backups will be placed as follows:

 DB1 full (or differential) backups will stripe to four files. These will be placed on the defined paths in a

round robin fashion:

 file1 is created on location 1;

 file2 is created on location 2;

 file3 is created on location 1; and

 file4 is created on location 2.

 DB1 log backups have only one file defined, so Minion Backup selects the target path for DB1 that has

the heaviest weight: in this case, DB1 location 1.

The use of the Minion.BackupTuningThresholds table is detailed much more thoroughly in the “How to: Set

up dynamic backup tuning thresholds” section, and in the “Minion.BackupTuningThresholds” section.

And for more information on backup paths, see “Minion.BackupSettingsPath”.

“How To” Topics: Advanced

How to: Install Minion Backup across multiple instances
You can install Minion Backup on a single instance, using the MinionBackup1.3.sql T-SQL script. You also have

the option of using the “MinionMassInstall.ps1” PowerShell script (provided in the Minion Backup download)

to install Minion Backup on dozens or hundreds of servers at once, just as easily as you would install it on a

single instance.

IMPORTANT: The destination database must exist on each server you install Minion Backup to. Partly for this

reason, we recommend installing MB to the master database. If you choose to install to another database

(for example, a user database named “DBAdmin”), verify that the database exists on all target servers.

To use MinionMassInstall.ps1 to install Minion Backup on multiple instances:

1. Open the script for editing.

2. Alter the $Servers variable to reflect the list of SQL Server instances on which you would like to install

Minion Backup. For example, to install MB on Server1, Server2, and Server3, the line would look like

this:

$Servers = “Server1”, “Server2”, “Server3”

123

3. Alter the $DBName variable to reflect the name of the database in which you would like to install

Minion Backup. For example, to install MB in the “master” database on all servers, the line would

look like this:

$DBName = “master”

4. Make sure that the $MinionInstallFile variable reflects the location of the installation script. For

example, “C:\MinionBackup\MinionBackup1.3.sql”.

5. Save the script and execute it.

How to: Shrink log files after log backup
Minion Backup provides the option of shrinking log files after log backups.

To enable this for the database YourDatabase:

1. If it does not exist already, insert a row into Minion.BackupSettings with DBName = ‘YourDatabase’

and ‘BackupType=’All’. (Alternately, you could provide any combination of rows to cover all three

types of backups – full, differential, and log – for YourDatabase.)

2. Update the row in Minion.BackupSettings for YourDatabase with the following values:

a. ShrinkLogOnLogBackup – Set this to 1, to enable the feature.

b. ShrinkLogThresholdInMB – The minimum size (in MB) the log file must be before Minion

Backup will shrink it. For example, you may not want to shrink any log file under 1024MB; so

set this field to 1024.

c. ShrinkLogSizeInMB – The size (in MB) the log file shrink should target.

Notes about log shrink on log backup:

 The ShrinkLogSizeInMB field represents how big you would like the log file to be after a file shrink. This

setting applies for EACH log file, not for all log files totaled. If you specify 1024 as the size here, and you

have three log files for your database, Minion Backup will attempt to shrink each of the three log files

down to 1024MB (so you’ll end up with at least 3072MB of logs).

 Minion Backup also helps you monitor your VLFs. Just before a log backup is taken, we store the

number of VLFs in the Minion.BackupLogDetails table, in the “VLFs” column. This can help you

troubleshoot log performance issues.

 MB also tracks the log size before the shrink. You can find this number in the _ table, columns

“PreBackupLogSizeInMB” and “SizeInMB”.

 The log file shrink on log backup is AG-aware. If you back up the log on a secondary replica of an

Availability Group, SQL Server is unable to shrink that file. So instead, Minion Backup will shrink the log

on the AG primary. The AG will then, in its own time, shrink the log file of the replica(s).

124

How to: Configure certificate backups
As far as Minion Backup is concerned, there are only two types of certificates: server certificates, and

database certificates. Once you enable and configure a certificate type for backup, certificates are

automatically backed up with every full database backup.

To configure certificate backups:

1. Enable the certificate backups in the Minion.BackupCert table.

2. Configure the certificate backup location in the Minion.BackupSettingsPath table.

Let’s walk through an example. We will first enable, then configure both server certificates and database

certificates for backup to a single backup location.

First, enable the certificate backups: Insert one row for each certificate type to the Minion.BackupCert table:

INSERT INTO Minion.BackupCert (CertType,CertPword,BackupCert)
SELECT 'ServerCert', Minion.EncryptTxt('S00persecr1tpa55'), 1;

INSERT INTO Minion.BackupCert (CertType,CertPword,BackupCert)
SELECT 'DatabaseCert', Minion.EncryptTxt('duB15secr1tpa55'), 1;

Note that the password is stored encrypted, so you must use the Minion.EncryptTxt function to encrypt the

password on insert.

Next, configure the certificate backup location: Insert one row per certificate type

(BackupType=’ServerCert’, and BackupType=’DatabaseCert’) to the Minion.BackupSettingsPath table:

-- Server certificate:
INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [isMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
SELECT 'MinionDefault' AS [DBName] ,
 0 AS [isMirror] ,
 'ServerCert' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'C:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,

125

 24 AS [RetHrs] ,
 0 AS [PathOrder] ,
 1 AS [IsActive] ,
 NULL AS [AzureCredential] ,
 'Server certificate backup target.' AS [Comment];

-- Database certificate:
INSERT INTO Minion.BackupSettingsPath
 ([DBName] ,
 [isMirror] ,
 [BackupType] ,
 [BackupLocType] ,
 [BackupDrive] ,
 [BackupPath] ,
 [ServerLabel] ,
 [RetHrs] ,
 [PathOrder] ,
 [IsActive] ,
 [AzureCredential] ,
 [Comment]
)
SELECT 'MinionDefault' AS [DBName] ,
 0 AS [isMirror] ,
 'DatabaseCert' AS [BackupType] ,
 'Local' AS [BackupLocType] ,
 'C:\' AS [BackupDrive] ,
 'SQLBackups\' AS [BackupPath] ,
 NULL AS [ServerLabel] ,
 24 AS [RetHrs] ,
 0 AS [PathOrder] ,
 1 AS [IsActive] ,
 NULL AS [AzureCredential] ,
 'Database certificate backup target.' AS [Comment];

Note that you can also use Inline Tokens for the FileName and FileExtension, or leave them NULL (or set

them to MinionDefault) for the default values.. So for example, if you set FileName=’%CertName%_%Date%’

and FileExtension=’ %ServerCertExtension%’, then the MinionEncrypt certificate backup might be named

‘MinionEncrypt_20161122.cer’. For more information, see “About: Inline Tokens”.

Note: For certificate backup settings paths, the database name (DBName) doesn’t really apply; we use

DBName=‘MinionDefault’ here, but you could just as easily use DBName=’Certificate’, or any other non-null

value.

How to: Encrypt backups
Starting in SQL Server 2014, you can perform backups that create encrypted backup files. To set up backup

encryption in Minion Backup:

126

1. Create a Database Master Key for the master database; and create a certificate to use for backup

encryption. For instructions and details, see the MSDN article on Backup Encryption:

https://msdn.microsoft.com/library/dn449489%28v=sql.120%29.aspx

2. Enable encryption for one or more backups by setting Encrypt = 1 in Minion.BackupSettings.

3. Configure encryption by inserting one or more rows into Minion.BackupEncryption.

Note: Encrypted backups are only available in SQL Server 2014 and beyond.

Encrypt backups for one database
First, create a Database Master Key and certificate. See the MSDN article on Backup Encryption for

instructions and details: https://msdn.microsoft.com/library/dn449489%28v=sql.120%29.aspx

Next, enable encryption for one or more backups. In our example, we will enable encrypted backups for the

DB1 database, all backup types:

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 NULL AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 0 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 NULL AS [Verify] ,

https://msdn.microsoft.com/library/dn449489%28v=sql.120%29.aspx
https://msdn.microsoft.com/library/dn449489%28v=sql.120%29.aspx

127

 1 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

Finally, configure encryption. In this example, we will use the same certificate for all DB1 backup types. So,

insert one row into Minion.BackupEncryption:

INSERT INTO Minion.BackupEncryption
 ([DBName] ,
 [BackupType] ,
 [CertType] ,
 [CertName] ,
 [EncrAlgorithm] ,
 [ThumbPrint] ,
 [IsActive]
)
SELECT 'DB1' AS [DBName] ,
 'All' AS [BackupType] ,
 'BackupEncryption' AS [CertType] ,
 'DB1cert' AS [CertName] ,
 'TRIPLE_DES_3KEY' AS [EncrAlgorithm] ,
 '0x63855BE98E7E87B08B836243C342CCC2A0DC2B54' AS [ThumbPrint] ,
 1 AS [IsActive];

Note: You can find the thumbprint and certificate name from master.sys.certificates. Check the MSDN article

above for valid encryption algorithms.

You can of course use different settings for different backup types: you can use different certificates, and

even different encryption algorithms for all databases and all backup types, to maximize security. You could

even configure precode to change certificates and algorithms fairly easily even on a monthly basis. The choice

is yours.

Encrypt backups for all databases
You also have the option to configure backup encryption for all databases very easily, as long as you don’t

mind using the same certificate and algorithm for all of them. Just follow the instructions for a single

database, as outlined above, with the following changes:

 Instead of inserting a row to Minion.BackupSettings, update the MinionDefault / All row to enable

backup encryption.

 Instead of inserting a row to Minion.BackupEncryption for a single database, insert a row for

MinionDefault.

128

How to: Synchronize backup settings and logs among instances
Minion Backup provides a “Data Waiter” feature, which syncs backup settings and backup logs between

instances of SQL Server. This is especially useful in failover situations – for example, Availability Groups,

replication scenarios, or mirrored partners – so that all the latest backup settings and logs are available,

regardless of which node is the primary at any given time.

Note: This feature is informally known as the Data Waiter, because it goes around and gives data to all of

your destination tables. (Get it?)

The basic steps to configure the Data Waiter are:

1. Install Minion Backup on each destination instance.

2. Configure the synchronization partners in the Minion.SyncServer table.

3. Enable the Data Waiter for settings and/or logs, in the Minion.BackupSettingsServer table.

4. Run the Minion.BackupSyncSettings procedure, to prepare a snapshot of settings data.

5. Run Minion.SyncPush to initialize the servers.

Note: The Minion.SyncServer table itself is not synchronized across nodes; this table identifies

synchronization partners – targets – and therefore the data would not be valid once moved off of the primary

instance. The debug tables are also not synchronized.

IMPORTANT: There are particular considerations to keep in mind when synchronizing settings. Be sure to see

the section “About: Synchronizing settings and log data with the Data Waiter”.

Example: Data Waiter serves one partner
There are several examples of two-partner scenarios. For example, you might want to sync settings and log

data to a log shipping partner. That way, if you ever have to “fail over” to the log partner, you’ll already have

Minion Backup installed and configured there with all the latest settings, and with a history of backups

complete.

Let’s walk through an example where we want to sync our primary server’s MB settings and logs to a sync

partner. The primary instance is Server1, and the target instance is Server2.

First, install Minion Backup on Server2 (the destination instance), just like you would install it on any other

instance. MB is smart enough not to attempt backing up databases that are offline.

Next, configure the synchronization partners in the Minion.SyncServer table on Server1:

INSERT INTO Minion.SyncServer
 ([Module] ,
 [DBName] ,
 [SyncServerName] ,
 [SyncDBName] ,
 [Port] ,
 [ConnectionTimeoutInSecs]
)

129

SELECT 'Backup' AS [Module] ,
 'master' AS [DBName] , -- DB in which Minion is installed locally
 'Server2' AS [SyncServerName] , -- Name of the sync partner
 'master' AS [SyncDBName] , -- DB in which Minion is installed on the sync partner
 1433 AS [Port] , -- Port of the sync partner
 10 AS [ConnectionTimeoutInSecs];

Enable the Data Waiter for settings and/or logs, in the Minion.BackupSettingsServer table on Server1. We

are not only enabling the Data Waiter, but also choosing the schedule on which we want the

synchronizations to run. It’s a good idea to sync logs very frequently, as MB is always adding to the log. But

settings can be synchronized less frequently.

In our example, we will enable log synchronization on a frequent schedule (in this case, an hourly log backup

schedule); and enable settings synch on a less frequent schedules (a weekly system database full backup):

-- Enable log synchronization
UPDATE Minion.BackupSettingsServer
SET SyncLogs = 1
WHERE DBType = 'System'
 AND BackupType = 'Full'
 AND Day = 'Sunday';

-- Enable settings synchronization
UPDATE Minion.BackupSettingsServer
SET SyncSettings = 1
WHERE DBType = 'User'
 AND BackupType = 'Log'
 AND Day = 'Daily';

IMPORTANT: In Minion Backup 1.0, when you enabled log sync or settings sync for a schedule, it became

possible for the Data Waiter to cause the backup job to run very long, if there were synch commands that

failed (for example, due to a downed sync partner). This issue has been greatly improved in Minion Backup

1.1; a downed sync partner will produce at maximum two timeouts (instead of one timeout per row).

Run the Minion.BackupSyncSettings procedure, to prepare a snapshot of settings data.

EXEC Minion.BackupSyncSettings;

Run Minion.SyncPush on Server1, to initialize the synch partner. This will push the current settings and the

contents of the log files to the Server2 sync partner. While we could run Minion.SyncPush once (with

@Tables = ‘All’ and @Process = ‘All’), it is more efficient to run it once for logs (with @Process=’All’) and once

for settings (with @Process=’New’):

EXEC Minion.SyncPush
 @Tables = 'Logs'
 , @SyncServerName = NULL

130

 , @SyncDBName = NULL
 , @Port = NULL
 , @Process = 'All'
 , @Module = 'Backup';

EXEC Minion.SyncPush
 @Tables = 'Settings'
 , @SyncServerName = NULL
 , @SyncDBName = NULL
 , @Port = NULL
 , @Process = 'New'
 , @Module = 'Backup';

Note: The three middle parameters – SyncServerName, SyncDBName, and Port – should be left NULL, as we

have already configured the target sync server in Minion.SyncServer. These parameters are used for ad hoc

synchronization scenarios.

From this point forward, Minion Backup will continue to synchronize settings and log data to the Server2

synch partner. If Server2 is unavailable at any point, MB will track those entries that failed to synchronize;

when the instance becomes available again, the Data Waiter will roll through the changes to bring Server2

back up to date.

Example: Data Waiter serves Availability Group members
The Data Waiter is perfectly tailored for AG scenarios. After you configure each replica as a synchronization

partner, the Availability Group can fail over to any replica. Data Waiter ensures that the Minion Backup

settings and logs will already be up to date on that replica when it fails over.

Let’s take an example of an Availability Group where any member may become primary. The preferred

replica is AG1, and secondary replicas are AG2 and AG3.

It is fairly simple to set up the Data Waiter among all nodes in the Availability Group, using the same process

as outlined above. The basic steps are:

1. Install Minion Backup on all replicas. Note that MB is smart enough not to attempt to back up

databases where it’s not supposed to.

2. Insert a row to Minion.SyncServer on the primary server, to define a synchronization partner.

3. Set the SyncSettings and/or SyncLog bits in the Minion.BackupSettingsServer table for one or more

backup types, to determine how often settings and log tables will synchronize.

4. Run the Minion.BackupSyncSettings procedure, to prepare a snapshot of settings data.

5. Run Minion.SyncPush to initialize the synchronization partners.

Let’s walk through these steps in more detail.

First, install Minion Backup on AG2 and AG3 (the destination instances), just like you would install it on any

other instance. MB is smart enough not to attempt backing up databases that are offline.

131

Configure backups normally for any databases that are not a part of the AG. For those databases that ARE

members of the AG, you can do nothing at all; Minion Backup defaults to backing up AG databases on the

AGPreferred replica, and will not attempt to back up an AG database that is not on the preferred server.

Next, configure the synchronization partners in the Minion.SyncServer table on AG1:

INSERT INTO Minion.SyncServer
 ([Module] ,
 [DBName] ,
 [SyncServerName] ,
 [SyncDBName] ,
 [Port] ,
 [ConnectionTimeoutInSecs]
)
SELECT 'Backup' AS [Module] ,
 'master' AS [DBName] , -- DB in which Minion is installed locally
 'AGReplica' AS [SyncServerName] , -- Automatically detects all AG replicas.
 'master' AS [SyncDBName] , -- DB in which Minion is installed on the sync partner
 1433 AS [Port] , -- Port of the sync partner
 10 AS [ConnectionTimeoutInSecs];

IMPORTANT: SyncServerName=’AGReplica’ causes the Data Waiter to push settings to all nodes of an

Availability Group. Minion Backup is smart enough to detect all existing AG nodes. What’s more, MB will add

a new node that is added subsequent to this configuration. For more information on SyncServerName

options, see the “Minion.SyncServer” section.

Enable the Data Waiter for settings and/or logs, in the Minion.BackupSettingsServer table on AG1. We are

not only enabling the Data Waiter, but also choosing the schedule on which we want the synchronizations to

run. It’s a good idea to sync logs very frequently, as MB is always adding to the log. But settings can be

synchronized less frequently.

In our example, we will enable log synchronization on a frequent schedule (in this case, an hourly log backup

schedule); and enable settings synch on a less frequent schedules (a weekly system database full backup):

-- Enable log synchronization
UPDATE Minion.BackupSettingsServer
SET SyncLogs = 1
WHERE DBType = 'System'
 AND BackupType = 'Full'
 AND Day = 'Sunday';

-- Enable settings synchronization
UPDATE Minion.BackupSettingsServer
SET SyncSettings = 1
WHERE DBType = 'User'
 AND BackupType = 'Log'
 AND Day = 'Daily';

132

IMPORTANT: When you enable log sync or settings sync for a schedule, it becomes possible for the Data

Waiter to cause the backup job to run very long, if there are synch commands that fail (for example, due to a

downed sync partner). Consider setting the timeout to a lower value in Minion.SyncServer, to limit the

amount of time that the Data Waiter will wait.

Run the Minion.BackupSyncSettings procedure, to prepare a snapshot of settings data.

EXEC Minion.BackupSyncSettings;

Run Minion.SyncPush on AG1, to initialize the servers. This will push the current settings and the contents of

the log files to the AG2 sync partner. While we could run Minion.SyncPush once (with @Tables = ‘All’ and

@Process = ‘All’), it is more efficient to run it once for logs (with @Process=’All’) and once for settings (with

@Process=’New’):

EXEC Minion.SyncPush
 @Tables = 'Logs'
 , @SyncServerName = NULL
 , @SyncDBName = NULL
 , @Port = NULL
 , @Process = 'All'
 , @Module = 'Backup';

EXEC Minion.SyncPush
 @Tables = 'Settings'
 , @SyncServerName = NULL
 , @SyncDBName = NULL
 , @Port = NULL
 , @Process = 'New'
 , @Module = 'Backup';

Note: The three middle parameters – SyncServerName, SyncDBName, and Port – should be left NULL, as we

have already configured the target sync server in Minion.SyncServer. These parameters are used for ad hoc

synchronization scenarios.

From this point forward, Minion Backup will continue to synchronize settings and log data to the AG2 synch

partner.

Example: Using Data Waiter with parallel backup schedules
The Minion.BackupSettingsServer table allows Minion Backup to run one job for multiple backup schedules

and options. However, this does not allow for taking more than one backup set at the same time.

For example, a company that wishes to take a differential backup of DB1 every 4 hours, and take transaction

log backups of DB2 every 15 minutes, will not be able to accomplish the simultaneous differential and

transaction log backup that must happen on every fourth hour. To achieve this, we must implement a second

133

job – which does not rely on the Minion.BackupSettingsServer table – with its own schedule, for either the

DB1 differential or the DB2 transaction log backups. For our example, we will use the DB1 differential

backups as the target of the second job. And we will assume that the Data Waiter scenario has already been

implemented as described in the previous sections.

Because the DB1 backup job has an independent schedule, it cannot use the settings or schedule from

Master.BackupSettingsServer, and the backup procedure call must therefore include all the necessary

parameters – including, as of MB 1.1, @SyncSettings and @SyncLog, to allow DB1 to continue participating in

the Data Waiter.

The step for our new job may then look something like this:

EXEC [Minion].[BackupMaster]
 @DBType = 'User' ,
 @BackupType = 'Diff',
 @Include = 'DB1',
 @SyncSettings = 1,
 @SyncLogs = 1,
 @StmtOnly = 0;

And of course, we must disable the existing DB1 differential schedule:

UPDATE Minion.BackupSettingsServer
SET IsActive = 0 -- Deactivate the schedule!
 , Comment = 'DB1 requires parallel backups; so it has a separate job, [Backup-DB1-Diff].'
 + ISNULL(Comment, '')
WHERE DBType = 'User'
 AND BackupType = 'Diff'
 AND [Day] = 'Daily'
 AND [Include] = 'DB1';

Now, the DB1 differentials may run in parallel with any other backup operations (as scheduled in

Minion.BackupSettingsServer), and the Data Waiter scenario is uninterrupted.

IMPORTANT: As with all other Minion.BackupMaster parameters, the @SyncSettings and @SyncLogs

parameters are only used if @BackupType is not null. @BackupType = NULL signals the procedure to use the

settings in Minion.BackupSettingsServer.

IMPORTANT: The @SyncSettings and @SyncLogs parameters do not, by themselves, implement a Data

Waiter scenario. The DW scenario must be implemented as described in the beginning of this section (“How

to: Synchronize backup settings and logs among instances”).

How to: Set up backups on Availability Groups
In an Availability Group (AG), you can perform backups on any node, including secondary nodes: those that

are not currently the primary. In this way you can “offload” backups to conserve resources on your primary

134

node. What’s more, an AG scenario includes the definition of a preferred server, or even a list of weighted

preferences.

Minion Backup allows you to configure which server you would like to perform backups on in an Availability

Group. You can set your backups to run on a specific server, or to run on the AG preferred server (whichever

one that happens to be at the time of backup). By default, backups in Availability Groups are performed on

the current primary node.

Let’s take an example, where DB9 is part of an AG with two nodes. We would like DB9 full and log backups to

be performed on the Server1 instance; but assign differential backups to the AG primary. We will then enter

one row for DB9 / All, setting the PreferredServer column to ‘Server1’; and one row for DB9 / Diff, setting

PreferredServer to ‘AGPreferred’:

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [PreferredServer] ,
 [ShrinkLogOnLogBackup] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB9' AS [DBName] ,
 NULL AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 0 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,

135

 'Server1' AS [PreferredServer] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,
 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

INSERT INTO Minion.BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [DelFileBefore] ,
 [DelFileBeforeAgree] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning] ,
 [Verify] ,
 [PreferredServer] ,
 [ShrinkLogOnLogBackup] ,
 [Encrypt] ,
 [Checksum] ,
 [Init] ,
 [Format] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB9' AS [DBName] ,
 NULL AS [Port] ,
 'Diff' AS [BackupType] ,
 0 AS [Exclude] ,
 0 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 0 AS [DelFileBefore] ,
 0 AS [DelFileBeforeAgree] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [DynamicTuning] ,
 '0' AS [Verify] ,
 'AGPreferred' AS [PreferredServer] ,
 0 AS [ShrinkLogOnLogBackup] ,
 0 AS [Encrypt] ,
 1 AS [Checksum] ,
 1 AS [Init] ,

136

 1 AS [Format] ,
 1 AS [IsActive] ,
 NULL AS [Comment];

Important notes:

 Availability groups cannot run differential backups on secondary nodes. If you accidentally

specify differentials on a server and that server isn’t primary, the differential backups simply

won’t run.

 If you use a specific server name for PreferredServer (as opposed to AGPreferred), it is enforced.

In our example above, we set PreferredServer=Server1 for full and log backups. If the Server1

node is down, full and log backups will simply not run for DB9.

How to: Set up dynamic backup tuning thresholds
In SQL Server, we can adjust high level settings to improve server performance. Similarly, we can adjust

settings in individual backup statements to improve backup performance. A backup tuning primer is beyond

the scope of this document; to learn about backup tuning, please see the recording of our Backup Tuning

class at http://bit.ly/1O6Rsh3 (download demo code at http://bit.ly/1Os6yzz).

Once you are familiar with the backup tuning process, you can perform an analysis, and then set up specific

thresholds in the Minion.BackupTuningThresholds table. It is a “Thresholds” table, because you configure a

different collection of backup tuning settings for different sized databases (thereby, defining backup tuning

thresholds). As your database grows and shrinks, Minion Backup will use the settings you’ve defined for

those sizes, so that backups always stay at peak performance.

IMPORTANT: The “dynamic backup tuning thresholds” topic is a complicated one. We highly recommend you

first read the “About: Dynamic Backup Tuning Thresholds” section before you begin.

The basic steps to set up dynamic backup tuning thresholds are:

1. Perform your backup tuning analysis for a database.

2. Enable backup tuning for that database, if it is not already enabled.

3. Enter threshold settings in Minion.BackupTuningThresholds.

The examples that follow will walk you through a few scenarios of backup tuning threshold use, and

demonstrate important features of the dynamic backup tuning module.

NOTE: All of these examples are just for the sake of example; the settings we use for these examples are not

recommendations and have no bearing on your particular environment. We DO NOT recommend using these

numbers without proper analysis of your particular system.

Example 1: Modify existing, default tuning thresholds
Minion Backup is installed with default backup tuning threshold settings, defined by the row

DBName=’MinionDefault’, BackupType=’All’, and ThresholdValue=0. You can modify the settings for all

http://bit.ly/1O6Rsh3
http://bit.ly/1Os6yzz

137

backups – assuming, of course, that no new threshold rows have been added – by updating this row. For

example, to change the number of files at the default level, run a simple update statement:

UPDATE [Minion].BackupTuningThresholds
SET NumberOfFiles = 2
WHERE DBName = 'MinionDefault';

These default settings will apply for all databases where DynamicTuning is enabled (in

Minion.BackupSettings), and that don’t otherwise have tuning settings defined.

Note that the threshold you enter represents the LOWER threshold (the “floor”). This is why the

“MinionDefault” row has a ThresholdValue of 0.

Example 2: Tune backups for one database based on file size
Now, we want to tune backups for our largest database: DB1. You have the option of basing tuning

thresholds on data size only, on data and index size, or on file size. (Note that file size includes any unused

space in the file; “data and index” does not.) You also have the option to tune specifically for full, differential,

or log backups; or for all three (BackupType=’All’). We choose to set DB1’s backup tuning thresholds based on

file size, for all backup types.

First, perform your backup tuning analysis. Minion Backup is a huge help to your analysis, because it gathers

and records the backup settings for EVERY backup (including Buffercount, MaxTransferSize, etc.) in

Minion.BackupLogDetails. These recorded settings are the actual settings that SQL Server used to take the

backup, whether or not those settings were supplied by you, or chosen by SQL Server itself.

Next, enable backup tuning for DB1. In this example, backup tuning is not enabled for the MinionDefault

row, and DB1 does not have an individual row. So, we must add a row for DB1 to Minion.BackupSettings.

Generate a template insert statement for DB1 using the Minion.CloneSettings procedure:

EXEC Minion.CloneSettings 'Minion.BackupSettings', 1;

Modify this generated insert statement for your database, changing the DBName to ‘DB1’, and setting

DynamicTuning to 1:

INSERT INTO [Minion].BackupSettings
 ([DBName] ,
 [Port] ,
 [BackupType] ,
 [Exclude] ,
 [GroupOrder] ,
 [GroupDBOrder] ,
 [Mirror] ,
 [LogLoc] ,
 [HistRetDays] ,
 [DynamicTuning]

138

)
SELECT 'DB1' AS [DBName] ,
 1433 AS [Port] ,
 'All' AS [BackupType] ,
 0 AS [Exclude] ,
 0 AS [GroupOrder] ,
 0 AS [GroupDBOrder] ,
 0 AS [Mirror] ,
 'Local' AS [LogLoc] ,
 60 AS [HistRetDays] ,
 1 AS [DynamicTuning] ;

(Note that the statement above is does not include all available fields.)

The next step is to set the backup tuning thresholds, by entering rows into Minion.BackupTuningThresholds.

In this example, our analysis showed that DB1 should have modest backup settings for any file size below

50GB, and slightly more aggressive settings for sizes above 50GB. So, we will enter two rows: one for file size

zero to 50GB, and one for file sizes 50GB and above.

IMPORTANT: The threshold you enter represents the LOWER threshold (the “floor”). Therefore, you must be

sure to enter a threshold for file size 0. If, for this example, we only entered a threshold for file sizes 50GB

and above, Minion Backup would use the default (“MinionDefault”) row values for file sizes below 50GB;

however, this behavior is only a failsafe, and we do not recommend relying on it. If you specify thresholds for

a database, be sure to cover the 0 floor threshold.

The first row has a lower threshold of 0GB, and sets number of files=2, buffercount=30, and max transfer

size=1mb (1048576 bytes):

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'All' AS [BackupType] ,
 'File' AS [SpaceType] , -- Tune backups by FILE size
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 2 AS [NumberOfFiles] ,
 30 AS [Buffercount] ,

139

 1048576 AS [MaxTransferSize] ,
 1 AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'Lowest threshold; values above zero.' AS [Comment];

The second row has a lower threshold of 50GB, and sets number of files=5, buffercount=50, and max transfer

size=2MB (2097152 bytes):

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'DB1' AS [DBName] ,
 'All' AS [BackupType] ,
 'File' AS [SpaceType] , -- Tune backups by FILE size
 'GB' AS [ThresholdMeasure] ,
 50 AS [ThresholdValue] ,
 5 AS [NumberOfFiles] ,
 50 AS [Buffercount] ,
 2097152 AS [MaxTransferSize] ,
 1 AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'Higher threshold; values above 50GB.' AS [Comment];

Note that these rows are for BackupType = ‘All’. If we wished to, we could instead tune different kinds of

backups for DB1 separately from one another. In that case, we would have one or more rows each for DB1

full, DB1 differential, and DB1 log backups.

Example 3: Tune backup types for all databases based on data + index
size
On another server, we would like to have tuning thresholds not for individual databases, but for different

backup types. And, we would like to base the thresholds on data and index size, not on file size. The steps for

this are the same as before: perform the tuning analysis, then make sure tuning is enabled for the databases,

and finally, create the tuning thresholds.

140

To make sure tuning is enabled for ALL databases on an instance, just run an update statement on

Minion.BackupSettings for all rows:

UPDATE Minion.BackupSettings
SET DynamicTuning = 1; -- Updates ALL rows

To set the threshold values per backup type, generate and run one insert statement for each backup type.

For our first entry, we configure settings for full backups by setting DBName to “MinionDefault”, BackupType

to “Full”, and SpaceType to “DataAndIndex”:

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'MinionDefault' AS [DBName] ,
 'Full' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] , -- Tune backups by data and index size
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 10 AS [NumberOfFiles] ,
 500 AS [Buffercount] ,
 2097152 AS [MaxTransferSize] ,
 1 AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'Default values for all FULL backups.' AS [Comment];

And the row for differential backups uses BackupType = ‘Diff’:

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,

141

 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'MinionDefault' AS [DBName] ,
 'Diff' AS [BackupType] ,
 'DataAndIndex' AS [SpaceType] , -- Tune backups by data and index size
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 5 AS [NumberOfFiles] ,
 100 AS [Buffercount] ,
 1048576 AS [MaxTransferSize] ,
 1 AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'Default values for all DIFF backups.' AS [Comment];

And the row for log backups uses BackupType = ‘Log’:

INSERT INTO Minion.BackupTuningThresholds
 ([DBName] ,
 [BackupType] ,
 [SpaceType] ,
 [ThresholdMeasure] ,
 [ThresholdValue] ,
 [NumberOfFiles] ,
 [Buffercount] ,
 [MaxTransferSize] ,
 [Compression] ,
 [BlockSize] ,
 [IsActive] ,
 [Comment]
)
SELECT 'MinionDefault' AS [DBName] ,
 'Log' AS [BackupType] ,
 'Log' AS [SpaceType] , -- Log backups ignore this setting
 'GB' AS [ThresholdMeasure] ,
 0 AS [ThresholdValue] ,
 1 AS [NumberOfFiles] ,
 30 AS [Buffercount] ,
 1048576 AS [MaxTransferSize] ,
 1 AS [Compression] ,
 0 AS [BlockSize] ,
 1 AS [IsActive] ,
 'Default values for all LOG backups.' AS [Comment];

142

We have now configured basic tuning settings for each type of backup. Of course, we could add additional

rows for each type, for different size thresholds. This is what puts the “dynamic” in “dynamic backup tuning”;

Minion Backup will automatically change to the new group of settings when your database passes the

defined threshold.

Revisions
Version Release Date Changes

1.0 June 2015 Initial release.

1.1 October 2015 Issues resolved:
 Fixed mixed collation issues.

 Fixed issue where Verify was being called regardless of whether there
were files that needed verifying.

 Data Waiter port wasn’t being configured correctly so there were
circumstances where the data wasn’t being shipped to the other servers.

 Greatly enhanced Data Waiter performance. Originally, if a server were
down, the rows would be errored out and saved to try for the next
execution. Each row would have to timeout. If the server stayed offline
for an extended period you could accumulate a lot of error rows waiting
to be pushed and since they all timed out, the job time began to increase
exponentially. Now, the server connection is tried once, and if the server
is still down then all of the rows are instantly errored out. Therefore,
there is only one timeout incurred for each server that’s down, instead
of one timeout for each row. This greatly stabilizes your job times when
you have sync servers that are offline.

 Fixed an issue where the ‘Missing’ parameter wasn’t being handled
properly in some circumstances.

 Fixed issue where Master was discarding differential backups in simple
mode.

 Fixed issue where Master wasn’t displaying DBs in proper order. They
were being run in the proper order, but the query that shows what ran
wasn’t sorting.

 Master SP wasn’t handling Daily schedules properly.
 Reduce DNS lookups by using ‘.’ when connecting to the local box

instead of the machine name which causes a DNS lookup and could
overload a DNS server.

 SQL Server 2008 R2 SP1 service consideration. The DMV
sys.dm_server_services didn’t show up until R2 SP1. The Master SP only
checked for 10.5 when querying this DMV. If a server is 10.5 under SP1,
then this fails because the DMV isn’t there. Now we check the full
version number so this shouldn’t happen again.

 Master SP not logging error when a schedule can’t be chosen.

 Situation where differentials will be errored out if they don’t have a base
backup. Now they’ll just be removed from the list.

 HeaderOnly data not getting populated on 2014 CU1 and above. MS
added 3 columns to the result set so we had to update for this.

 Increased shrinkLog variable sizes to accommodate a large number of
files.

143

 Fixed international language issue with decimals.
 Push to Minion error handling improved. There were some errors being

generated that ended SP execution, but those errors weren’t being
pushed to the Minion repository.

New features:

 You can now take NUL backups so you can kick start your backup tuning
scenario. For more information, see the section titled “About: Backing
up to NUL”.

1.2 September
2016

Issues resolved:
 Installer issue: it wasn’t including new table columns needed because

Microsoft changed the Restore Headeronly output.
 Backups failed if SSAS is installed on the server and the service is turned

off.
 Incorrect error logic when reporting an error back to the Agent.

 StatusMonitor job should not have a schedule.

 Not logging the error properly when you don't have Powershell scripts
enabled. It will now show up in the Minion.BackupLogDetails table.

 Sometimes @@Servername and the machine name aren't the
same. It's the machine name you want to go by, so it now uses
SERVERPROPERTY('MachineName').

 Log shipping primaries being removed from backups when they
shouldn’t be.

 Scheduler table wasn’t honoring high-level schedules (FirstOfMonth,
etc.) under certain circumstances.

New features:
 New database groups feature. See Minion.DBMaintDBGroups.

 New FrequencyMins column in Minion.BackupSettingsServer allows you
to schedule repeating backups less frequently than the job runs.

 New @TestDateTime parameter for Minion.BackupMaster allows you to
test what schedule will be used at a give date and time.

 Currently when a backup fails, the errors are logged to the
Minion.BackupLogDetails table and the job succeeds. We’ve had
feedback from users that they want the job to fail when a backup
fails. So now if there are failures or warnings, you can set the job to fail
using the Minion.BackupMaster parameters @FailJobOnError and
@FailJobOnWarning, or the Minion.BackupSettingsServer columns
FailJobOnError and FailJobOnWarning.

1.3 February 2017 New features:
 Other minor bug fixes.

 Increased international support.

 Inline tokens.

 Enhanced restore functionality.

 New fields in Minion.BackupSettingsPath.

 Keyword search in Minion.HELP.

https://github.com/Servername

144

FAQ

Why does Minion Backup use xp_cmdshell instead of SQL CLR?
First, it would be a burden to require users to have CLR installed on every single server on the network. Not

only that, but the database setting would have to be set to UNTRUSTWORTHY for the things MB needs to do;

or else, we would have a far more complex scenario on hand, and that level of complication just for backups

is not a good setup.

Using SQL CLR would also put us in the business of having to support different .NET framework versions,

which would also complicate things.

Cmdshell is the best choice because it’s simple to lock down to only administrators, and it adds no extra

“gotchas”. There were times when it would have been easier to use CLR, but we simply can’t require that

everyone enables CLR.

Just be sure to lock down cmdshell. For instructions on this, see this article by Sean:

http://www.midnightdba.com/DBARant/?p=1243

And for further reading, here is the link to one of Sean’s rants on the topic:

http://www.midnightdba.com/DBARant/?p=1204

Why should I run Minion.BackupMaster instead of Minion.BackupDB?
We HIGHLY recommend using Minion.BackupMaster for all of your backup operations, even when backing up

a single database. To explore the “why”, let’s look at each of the two procedures briefly.

 The Minion.BackupDB stored procedure creates and runs the actual backup statement for a single

database, using the settings stored in the Minion.BackupSettings table.

 The Minion.BackupMaster procedure makes all the decisions on which databases to back up, and what

order they should be in. It calls Minion.BackupDB to perform a backup per database, within a single

backup batch.

So why run Minion.BackupMaster?

 It unifies your code, and therefore minimizes your effort. By calling the same procedure every time you

reduce your learning curve and cut down on mistakes.

 Future functionality may move to the Minion.BackupMaster procedure; if you get used to using

Minion.Backup Master now, then things will always work as intended.

 Minion.BackupMaster takes advantage of rich include and exclude functionality, including regular

expressions, like expressions, and comma-delimited lists. Even better, when run without parameters, it

takes advantage of rich table-based scheduling and all the benefits associated.

 The master SP performs extensive logging, and it enables Live Insight via the status monitor job (which

updates each backup percentage complete as it runs).

http://www.midnightdba.com/DBARant/?p=1243
http://www.midnightdba.com/DBARant/?p=1204

145

 Minion.BackupMaster runs configured pre- and postcode, determines AG backup location, performs file

actions (such as copy and move), and runs the Data Waiter feature to synchronize log and settings data

across instances.

In short, Minion.BackupMaster decides on, runs, or causes to run every feature in Minion Backup. Don’t

shortcut your features list by running Minion.BackupDB. Use Minion.BackupMaster!

Why must I supply values for all backup types for a database in the
settings tables?

Several settings tables – including Minion.BackupSettings, Minion.BackupSettingsPath, and

Minion.BackupTuningThresholds – provide a MinionDefault / All row to provide settings for databases that

do not have specific settings defined. In this way, there is a base level default that allows Minion Backup to

function immediately upon installation.

We made a design decision to “keep in the scope” once any database-specific settings were defined. In other

words, once the configuration context is at the database level, it stays at the database level. Therefore, if you

define a database-specific row, you must be sure that all backup types are represented for that database.

The reasoning behind this rule is this: It takes a conscious act (inserting a row) to change settings for a

specific database. So, we don’t want the system to “fall back” on default values, possibly countermanding the

intended configuration for that particular database.

For more information, see “Backup tuning threshold precedence”.

Why isn’t my log backup working for this database?
The most likely causes are:

 The database could be in the wrong recovery mode; or

 The database has never had a full backup before; or

 The backups are misconfigured.

Recovery mode: Only databases in full or bulk logged mode allow log backups. Check that your database is in

either full or bulk logged mode. For more information on SQL Server recovery models, see

https://msdn.microsoft.com/en-us/library/ms189275.aspx

Full backups: In SQL Server, a database must have had a full backup before a log backup can be taken. So

Minion Backup prevents this: if you try to take a log backup, and the database doesn't have a restore base,

then the system will remove the log backup from the list. It will not attempt to take a log backup until there's a

full backup in place. Though it may seem logical to perform a full backup instead of a full, we do not do this,

because log backups can be taken very frequently; we don't want to make what is usually a quick operation

into a very long operation.

Other: If neither of these is the issue try the following:

https://msdn.microsoft.com/en-us/library/ms189275.aspx

146

 Check the Minion.BackupLog and Minion.BackupLogDetails to see if log backups are being attempted

and failing, for this database.

 Check Minion.BackupSettings to be sure that either (a) the database in question has rows defined to cover

all backup types, or (b) the database has NO database-specific rows defined, and therefore will use the

MinionDefault settings.

 Check Minion.BackupSettingsPath to be sure that (a) the database in question has rows defined to cover

all backup types, or (b) the database has NO database-specific rows defined, and therefore will use the

MinionDefault settings.

And as always, get support from us at www.MinionWare.net if you need it.

Why isn’t my log file shrinking after a log backup?
Make sure that you’ve set all three of the “Shrink” fields in Minion.BackupSettings for the proper database

and backup type. (We often find that when a log file won’t shrink after log backup, it’s because the “Shrink”

fields were configured for BackupType=’Full’ instead of ‘All’ or ‘Log’).

Why doesn’t Minion Backup offer a “shrink data file after full backup”
feature?

This is by design. Shrinking the data file is not recommended.

Why isn’t MB using my backup tuning thresholds?
There are a few possibilities:

 Check the log of the latest backups for your database in Minion.BackupLogDetails. Compare the logged

backup tuning values that were used (NumberOfFiles, Buffercount, MaxTransferSize, and Compression)

against the settings you expect to be used from Minion.BackupTuningThresholds.

 Check if you have disabled dynamic tuning for that database, or for all databases. Check the

DynamicTuning column in Minion.BackupSettings.

 Perhaps you have not set a threshold that includes your database at its present size. Check

Minion.BackupTuningThresholds to determine that:

o rows are defined for your database (DBName, BackupType)

o the rows for your data the appropriate rows are active (IsActive=1),

o your database is larger than the threshold you’re expecting it to use (SpaceType, ThresholdMeasure,

ThresholdValue). One common mistake is to omit a “floor” value of zero for a particular database;

this causes that database to use the MinionDefault values in Minion.BackupTuningThresholds,

instead.

Can I back up to Azure?
Yes, you can back up to Azure. Currently, Minion Backup can't copy or move files to or from Microsoft Azure

Blobs. However, you can do a primary backup to an Azure Blob.

http://www.minionware.net/

147

Minion Backup cannot delete files or create directories on Azure Blobs.

You guys are the MidnightDBAs, and you run MidnightSQL. What’s with
“MinionWare”?

MidnightDBA is the banner for our free training. MidnighSQL Consulting, LLC is our actual consulting business.

And now, we’ve spun up MinionWare, LLC as our software company. We released our new SQL Server

management solution, Minion Enterprise, under the MinionWare banner. And now, all the little Minion guys

will live together on www.MinionWare.net.

Minion Reindex, Minion Backup, and other Minion modules are, and will continue to be free. Minion

Enterprise is real enterprise software, and we’d love the chance to prove to you that it’s worth paying for.

Get in touch at www.MinionWare.net and let’s do a demo, and get you a free 90 day trial!

About Us
Minion by MidnightDBA is a creation of Jen and Sean McCown, owners of MinionWare, LLC and MidnightSQL

Consulting, LLC.

We formed MinionWare, LLC to create Minion Enterprise: an enterprise management solution for

centralized SQL Server management and alerting. This solution allows your database administrator to

manage an enterprise of one, hundreds, or even thousands of SQL Servers from one central location. Minion

Enterprise provides not just alerting and reporting, but backups, maintenance, configuration, and

enforcement. Go to www.MinionWare.net for details and to request a free 90 day trial.

In our “MidnightSQL” consulting work, we perform a full range of databases services that revolve around SQL

Server. We’ve got over 30 years of experience between us and we’ve seen and done almost everything there

is to do. We have two decades of experience managing large enterprises, and we bring that straight to you.

Take a look at www.MidnightSQL.com for more information on what we can do for you and your databases.

Under the “MidnightDBA” banner, we make free technology tutorials, blogs, and a live weekly webshow

(DBAs@Midnight). We cover various aspects of SQL Server and PowerShell, technology news, and whatever

else strikes our fancy. You’ll also find recordings of our classes – we speak at user groups and conferences

internationally – and of our webshow. Check all of that out at www.MidnightDBA.com

We are both “MidnightDBA” and “MidnightSQL”…the terms are nearly interchangeable, but we tend to keep

all of our free stuff under the MidnightDBA banner, and paid services under MidnightSQL Consulting, LLC.

Feel free to call us the MidnightDBAs, those MidnightSQL guys, or just “Sean” and “Jen”. We’re all good.

http://www.minionware.net/
http://www.minionware.net/
http://www.minionware.net/
http://www.midnightsql.com/
http://www.midnightdba.com/

148

Contents
What’s new in MB 1.3 ... 1

Quick Start ... 1

Change Schedules ... 3

Table based scheduling ... 3

Change Default Settings.. 5

Top 20 Features .. 7

Architecture Overview .. 9

Configuration Settings Hierarchy.. 9

The Configuration Settings Hierarchy Rule .. 10

Example 1: Proper Configuration ... 10

Example 2: Improper Configuration ... 10

Example 3: The “Exclude” Exception .. 11

Include and Exclude Precedence .. 11

Include and Exclude strings .. 12

Exclude bit ... 12

Run Time Configuration .. 13

Logging .. 14

Alerting .. 14

Moving Parts ... 16

Overview of Tables ... 16

Settings Tables Detail .. 17

Minion.BackupCert ... 17

Minion.BackupEncryption .. 18

Minion.BackupRestoreSettingsPath ... 19

Minion.BackupRestoreTuningThresholds .. 21

Minion.BackupSettings ... 23

Minion.BackupSettingsPath.. 31

Minion.BackupSettingsServer... 35

Minion.BackupTuningThresholds ... 39

149

Minion.DBMaintDBGroups ... 42

Minion.DBMaintInlineTokens ... 43

Minion.DBMaintRegexLookup .. 44

Minion.SyncServer .. 45

Log Tables Detail ... 46

Minion.BackupFileListOnly ... 46

Minion.BackupFiles ... 47

Minion.BackupHeaderOnlyWork .. 49

Minion.BackupLog .. 49

Minion.BackupLogDetails ... 51

Minion.SyncCmds ... 56

Minion.SyncErrorCmds ... 57

Debug Tables Detail .. 58

Minion.BackupDebug.. 58

Minion.BackupDebugLogDetails... 58

Work Tables Detail .. 58

Minion.BackupRestoreFileListOnlyTemp ... 58

Minion.DBMaintDBSizeTemp ... 59

Minion.Work ... 59

Overview of Views .. 59

Overview of Procedures ... 59

Procedures Detail .. 59

Minion.BackupDB ... 59

Minion.BackupFileAction .. 60

Minion.BackupFilesDelete .. 61

Minion.BackupMaster .. 63

Minion.BackupRestoreDB ... 66

Minion.BackupSyncLogs ... 67

Minion.BackupSyncSettings.. 67

Minion.BackupStatusMonitor .. 67

Minion.BackupStmtGet .. 68

150

Minion.CloneSettings .. 69

Minion.HELP .. 70

Minion.SyncPush ... 71

Overview of Jobs ... 72

“About” Topics .. 72

About: Backup Schedules ... 72

Table based scheduling ... 72

Parameter Based Scheduling .. 73

Discussion: Hierarchy and Precedence... 73

Discussion: Overlapping Schedules, and MaxForTimeframe ... 74

Discussion: Sample row for missing backups ... 75

Discussion: Using FrequencyMins .. 75

About: Backup file retention .. 75

About: Synchronizing settings and log data with the Data Waiter .. 76

Moving Parts ... 76

Use Cases .. 77

Failure Handling .. 78

Enabling Data Waiter while using parameter based scheduling ... 78

About: Dynamic Backup Tuning Thresholds ... 79

Introduction .. 79

Enabled by Default .. 80

Essential Guidelines .. 80

Important Backup Tuning Concepts ... 80

Backup Tuning Threshold Precedence ... 81

Business Aware Dynamic Backup Tuning ... 82

Tuning Log Backups... 82

About: Backing up to NUL ... 83

About: Inline Tokens ... 83

Create and use a custom Inline Token ... 84

Fields that accept Inline Tokens ... 84

Custom Inline Tokens .. 85

151

Inline Token Internals ... 85

“How To” Topics: Basic Configuration .. 86

How To: Configure settings for a single database .. 86

How To: Configure settings for all databases ... 87

How To: Back up databases in a specific order .. 88

How To: Change backup schedules .. 91

Table based scheduling ... 92

Parameter based scheduling (traditional approach) ... 92

Hybrid scheduling ... 93

How To: Generate back up statements only .. 93

How To: Back up only databases that are not marked READ_ONLY ... 93

How To: Include databases in backups .. 94

Include databases in table based scheduling ... 94

Include databases in traditional scheduling ... 95

How To: Exclude databases from backups ... 97

Exclude a database from all backups ... 97

Exclude databases in table based scheduling .. 97

Exclude databases in traditional scheduling .. 98

How To: Run code before or after backups ... 99

Database precode and postcode .. 100

Batch precode and postcode .. 102

How To: Configure backup file retention ... 102

How to: configure the missing backups schedule .. 103

To schedule a regular run for missing backups .. 104

To run missing backups manually ... 105

How to: Set up Restore Profiles .. 105

Have backups .. 105

Configure paths ... 105

Configure tuning ... 106

Generate statements .. 107

Execute statements .. 107

152

Additional options ... 108

“How To” Topics: Backup Mirrors and File Actions .. 108

How to: Set up mirror backups ... 108

How to: Copy files after backup (single and multiple locations) ... 111

How to: Move files to a location after backup ... 113

How to: Copy and move backup files ... 116

How to: Back up to multiple files in a single location .. 116

How to: Back up to multiple locations ... 119

“How To” Topics: Advanced ... 122

How to: Install Minion Backup across multiple instances.. 122

How to: Shrink log files after log backup .. 123

How to: Configure certificate backups ... 124

How to: Encrypt backups .. 125

Encrypt backups for one database ... 126

Encrypt backups for all databases .. 127

How to: Synchronize backup settings and logs among instances.. 128

Example: Data Waiter serves one partner ... 128

Example: Data Waiter serves Availability Group members ... 130

Example: Using Data Waiter with parallel backup schedules .. 132

How to: Set up backups on Availability Groups ... 133

How to: Set up dynamic backup tuning thresholds ... 136

Example 1: Modify existing, default tuning thresholds ... 136

Example 2: Tune backups for one database based on file size .. 137

Example 3: Tune backup types for all databases based on data + index size ... 139

Revisions.. 142

FAQ .. 144

Why does Minion Backup use xp_cmdshell instead of SQL CLR? .. 144

Why should I run Minion.BackupMaster instead of Minion.BackupDB? .. 144

Why must I supply values for all backup types for a database in the settings tables? 145

Why isn’t my log backup working for this database? .. 145

Why isn’t my log file shrinking after a log backup? ... 146

153

Why doesn’t Minion Backup offer a “shrink data file after full backup” feature? .. 146

Why isn’t MB using my backup tuning thresholds? ... 146

Can I back up to Azure? .. 146

You guys are the MidnightDBAs, and you run MidnightSQL. What’s with “MinionWare”? 147

About Us .. 147

RESOURCES

Home http://MinionWare.net

Tutorials http://youtube.com/MidnightDBA

Support https://minionware.desk.com/

Scripts by users http://MinionWare.net/CommunityZone/

Sales MinionWareSales@MidnightDBA.com

Twitter https://Twitter.com/HeyMinionWare

Facebook https://www.Facebook.com/MinionWare

http://minionware.net/
http://youtube.com/MidnightDBA
https://minionware.desk.com/
http://minionware.net/CommunityZone/
mailto:MinionWareSales@MidnightDBA.com
https://twitter.com/HeyMinionWare
https://www.facebook.com/MinionWare

