
1

MINION CHECKDB:
QUICK START

Minion CheckDB by MinionWare is a free stand-alone integrity check solution that can be deployed on any

number of servers. Minion CheckDB is comprised of SQL Server tables, stored procedures, and SQL Agent

jobs. For links to downloads, tutorials, and articles, see www.MinionWare.net.

This document explains Minion CheckDB by MinionWare (“Minion CheckDB”), its uses, features, moving

parts, and examples.

For video tutorials on Minion CheckDB, see the Minion CheckDB playlist on our YouTube channel:

https://www.youtube.com/MidnightDBA

Minion CheckDB is one module of the Minion suite of products.

There are three easter eggs in this documentation; find all three and email us at

MinionWareSales@MidnightDBA.com for three free licenses of Minion Enterprise!

(First time winners only, please.)

Quick Start
System requirements:

 SQL Server 2008 or above.

 The sp_configure setting xp_cmdshell must be enabled*.

 PowerShell 3.0 or above; execution policy set to RemoteSigned.

Once the installer has been run, nothing else is required. From here on, Minion CheckDB will run regularly

for all non-TempDB databases. The CheckDB routine automatically handles databases as they are created,

dropped, or renamed.

* xp_cmdshell can be turned on and off with the database

PreCode / PostCode options, to help comply with security policies.

https://www.youtube.com/MidnightDBA
mailto:MinionWareSales@MidnightDBA.com

2

For more information on xp_cmdshell, see “Security Theater”

on www.MidnightDBA.com/DBARant.

This entire document is also available within the installed Minion CheckDB database using the SQL stored

procedure Minion.HELP.

Read the Minion Install Guide.docx (contained within the MinionCheckDB1.0.zip file) for full instructions and

information on using the installer. The basic steps to installing Minion CheckDB are:

1. Download MinionCheckDB1.0.zip from MinionWare.net and extract all files to the location of your

choice, replacing any existing MinionWare installer folders from previous downloads.

2. Open Powershell as an administrator, and use Get-ExecutionPolicy to verify the current execution

policy is set to Unrestricted or RemoteSigned. If it is not, use Set-ExecutionPolicy RemoteSigned to

allow the installer to run.

3. Right-click on each of the following files, select Properties, and then “Unblock” the file if necessary.

(This allows you to run scripts downloaded from the web using the RemoteSigned execution policy.)

a. …\MinionWare\MinionSetupMaster.ps1

b. …\MinionWare\MinionSetup.ps1

c. …\MinionWare\Includes\CheckDBInclude.ps1

4. Run MinionSetupMaster.ps1 in the PowerShell administrator window as follows:

.\MinionSetupMaster.ps1 <servername> <DBName> <Product>

Examples:

.\MinionSetupMaster.ps1 localhost master CheckDB

or

.\MinionSetupMaster.ps1 YourServer master CheckDB

Note that you can install multiple products, and to multiple servers. For more information, see the Minion

Install Guide.docx.

For simplicity, this Quick Start guide assumes that you have installed Minion CheckDB on one server, named

“YourServer”.

Customizing Schedules
Minion CheckDB offers a choice of scheduling options. This quick start section covers the default method of

scheduling: table based scheduling. We will cover parameter based schedules, and hybrid schedules, in the

section titled “How To: Change Schedules”. For more information, see “About: Scheduling”.

http://www.midnightdba.com/DBARant/?p=1243
http://www.midnightdba.com/DBARant
http://minionware.net/

3

Table based scheduling
In conjunction with the “MinionCheckDB-AUTO” job, the Minion.CheckDBSettingsServer table allows you to

configure flexible CheckDB scheduling scenarios. By default, Minion CheckDB is installed with the following

configuration:

The MinionCheckDB-AUTO job runs hourly, checking the Minion.CheckDBSettingsServer table to determine

what operation should be run.

In the Minion.CheckDBSettingsServer table:

 System database CheckDB operations are scheduled daily at 10:00pm.

 User database CheckDB operations are scheduled for Saturdays at 11:00pm.

The following table displays the first few columns of this default scenario in Minion.CheckDBSettingsServer:

ID DBType OpName Day ReadOnly BeginTime EndTime MaxForTimeframe
1 System CHECKDB Daily 1 22:00:00 22:30:00 1

2 User CHECKDB Saturday 1 23:00:00 23:30:00 1

Note: There is also an inactive row for User databases to run AUTO operations Saturday at 11:00 pm. For

information about OpName = AUTO, see “About: Dynamic Thresholds” and “How to: Configure Dynamic

Thresholds”. For an example of a complex scenario that includes OpName=AUTO, see “About: Minion

CheckDB Operations”.

Let’s walk through two different schedule change scenarios:

Scenario 1: Run CheckDB on user databases daily. To change the default setup to run daily CheckDBs on all

user databases, update the row with DBType=’User’ & OpName=‘CHECKDB’, setting the Day field to “Daily”.

Scenario 2: Run CheckTable twice daily for specific schemas. To change the default setup in order to run

CheckTable twice daily on two specific schemas (in this example, Import and Ace), insert a new row to

Minion.CheckDBSettingsServer for CheckDBType=’CheckTable’ and Schemas=’Import,Ace’:

INSERT INTO Minion.CheckDBSettingsServer
 (DBType
 , OpName
 , Day
 , ReadOnly
 , BeginTime
 , EndTime
 , MaxForTimeframe
 , FrequencyMins
 , Schemas
 , Debug
 , FailJobOnError
 , FailJobOnWarning
 , IsActive

4

 , Comment
)
VALUES ('User' -- DBType
 , 'CHECKTABLE' -- OpName
 , 'Daily' -- Day
 , 1 -- ReadOnly
 , '04:00:00' -- BeginTime
 , '18:00:00' -- EndTime
 , 2 -- MaxForTimeframe
 , 720 -- FrequencyMins
 , 'Import,Ace' -- Schemas
 , 0 -- Debug
 , 0 -- FailJobOnError
 , 0 -- FailJobOnWarning
 , 1 -- IsActive
 , 'Twice daily CHECKTABLE operations' -- Comment
);

In the scenario above there are a few critical concepts to understand:

 Execution Window: The BeginTime and EndTime settings will restrict this CheckTable entry to

between 4:00am and 6:00pm. Minion CheckDB will ignore this entry outside of that execution

window.

 Frequency: FrequencyMins=720 means that this schedule (row) will only run once in any 720 minute

(12 hour) period, regardless of how many times Minion CheckDB is schedule to run.

 Always set the MaxForTimeframe field. This setting determines the maximum number of times an

operation may be executed in the defined timeframe. In the insert statement above,

MaxForTimeframe is set to 2, because we only want to allow a maximum of 2 CheckTable operations

during the daily window (between 4am and 6pm).

 The Schemas setting applies to all databases: What’s more, Schemas=’Import,Ace’. This means that

the run will only apply to tables within the “Import” and “Ace” schemas in any database on the

system. (The Schemas and Tables fields apply to all databases.)

Default Settings
Minion CheckDB stores default settings for the entire instance in two rows (where DBName=’MinionDefault’)

in the Minion.CheckDBSettingsDB table.

Warning: Do not delete the MinionDefault rows, or rename the DBName for the MinionDefault row, in

Minion.CheckDBSettingsDB!

To change the default settings, run an update statement on the MinionDefault / CHECKDB row (or the

MinionDefault / CHECKTABLE row) in Minion.CheckDBSettingsDB. For example:

UPDATE Minion.CheckDBSettingsDB
SET NoInfoMsgs = 1

5

 , HistRetDays = 75
 , ResultMode = 'Summary'
WHERE DBName = 'MinionDefault'
 AND OpName = 'CHECKDB';

6

MINION CHECKDB

Contents in Brief
Quick Start ... 1

Top Features ... 6

Architecture Overview .. 8

Moving Parts ... 13

“About” Topics .. 67

“How To” Topics.. 83

Troubleshooting .. 120

Revisions.. 126

FAQ .. 127

About Us .. 128

Table of Contents .. 129

Top Features
Minion CheckDB is a stand-alone database integrity check module. Once installed, Minion CheckDB

automatically checks all online databases on the SQL Server instance, and will incorporate databases as they

are added or removed.

Some of the very best features of Minion CheckDB are, in a nutshell:

1. Dynamic Thresholds – Minion CheckDB allows you to automate whether databases get a DBCC

CheckDB operation, or a DBCC CheckTable operation.

2. Remote CheckDB – Automatically run DBCC CheckDB remotely for any database.

3. Dynamic Remote CheckDB – Allows you to set a tuning threshold, so the CheckDB will run remotely

only if it is above that threshold.

4. Custom Snapshots – Choose to create a custom snapshot, for versions of SQL Server that support

custom snapshots. This allow you to determine where your snapshot file(s) will be located.

5. Custom Dynamic Snapshots – For CheckTable operations, you can configure “rotating” dynamic

snapshots that drop and recreate every few minutes.

6. Multithreaded database processing – Run multiple DBCC CheckDB operations in parallel.

7

7. Multithreaded table processing – Run multiple DBCC CheckTable processes at the same time.

8. Rotational scheduling – Minion CheckDB allows you to define a rotation scenario for your

operations. For example, a nightly round of 10 databases would perform integrity checks on 10

databases the first night, another 10 databases the second night, and so on. You can also use the

rotational scheduling to limit operations by time; for example, you could configure MC to cycle

through DBCC CheckDB operations for 90 minutes each night.

9. Operation ordering – Run DBCC CheckDB and CheckTable operations in exactly the order you need.

10. Extensive, useful logging – Use the Minion CheckDB log for estimating the end of the current

CheckDB run, troubleshooting, planning, and reporting. Errors are reported in the log table instead

of text files.

11. Run code before or after CheckDBs and CheckTables – This is an extraordinarily flexible feature that

allows for nearly infinite configurability.

12. Integrated help – Get help on any Minion CheckDB object without leaving Management Studio, with

the Minion.HELP stored procedure.

13. Clone Settings – Use the new CloneSettings procedure to generate template insert statements for

any table, based on an example row in the table.

14. Scenario testing — Test the settings to be used at any given time for any database.

15. Automated installation – Run the Minion CheckDB installation scripts, and it just goes. You can even

rollout to hundreds of servers almost as easily as you can to a single server.

16. Granular configuration without extra jobs – Configure extensive settings at the default, database,

and/or table levels with ease. Say good-bye to managing multiple jobs for specialized scenarios.

Most of the time you’ll run MC with a single job.

17. Live Insight – See what Minion CheckDB is doing every step of the way. You can even see the

percent complete for each operation as it runs.

18. Flexible include and exclude – Perform integrity checks on only what you need, using specific

database names, LIKE expressions, and even regular expressions. Further restrict operations by

including or excluding by schemas and/or tables.

19. Inline Tokens – Inline Tokens allow you use defined patterns to create dynamic names. For example,

MC comes with the predefined Inline Token “Server” and “DBName”. For more information, see the

“About: Inline Tokens” section.

For links to downloads, tutorials and articles, see

www.MinionWare.nethttp://www.MidnightSQL.com/Minion.http://www.MidnightSQL.com/Minion

8

Architecture Overview
Minion CheckDB is made up of SQL Server stored procedures, functions, tables, and jobs. The tables store

configuration and log data; stored procedures perform CheckDB operations; and the jobs execute and

monitor those operations on a schedule.

This section provides a brief overview of Minion CheckDB elements at a high level.

Note: Minion CheckDB is installed in the master database by default. You certainly can install Minion in

another database (like a DBAdmin database), but when you do, you must also verify that the job steps point

to the appropriate database.

Configuration Settings Hierarchy
Configuration settings for integrity check operations are stored in tables: Minion.CheckDBSettingsDB and

Minion. CheckDBSettingsTable. A default row in Minion.CheckDBSettingsDB (DBName=’MinionDefault’)

provides settings for any database that doesn’t have its own specific settings. This is a hierarchy of

granularity, where more specific configuration levels completely override the less specific levels. That is:

 Insert a row for a specific database (for example, DBName=’DB1’) into Minion.CheckDBSettingsDB,

and that row will override ALL of the default settings for that database.

 Insert a row for a specific table in Minion.CheckDBSettingsTable, and that row will override ALL of

the default (or, if available, database-specific) settings for that particular table.

In other words, a database-specific row completely overrides the MinionDefault rows, for that particular

database. And a table-specific row overrides the MinionDefault settings for that particular table.

Note: A value left at NULL in one of these tables means that Minion will use the setting that the SQL Server

instance itself uses.

Additionally, you can configure settings to apply only on specific days, or during certain hours of the day. (For

more information, see the “Discussion: Hierarchy and Precedence” section in “About: Scheduling”.)

IMPORTANT: Each level of settings in Minion.CheckDBSettingsDB (that is, the MinionDefault level, and each

specified database level) should have one row for CHECKTABLE and one row for CHECKDB.

Example: Proper Configuration
Let us take a simple example, in which these are the contents of the Minion.CheckDBSettingsDB table (not all

columns are shown here):

ID DBName OpLevel OpName Exclude NoInfoMsgs

1 MinionDefault DB CHECKDB 0 0
2 MinionDefault DB CHECKTABLE 0 1

3 DB1 DB CHECKDB 1 0

4 DB1 DB CHECKTABLE 1 0

9

There are 30 databases on this server. As Minion CheckDB runs, the settings for individual databases will be

selected as follows:

 CheckDB operations of database DB1 will use only the settings from the row with ID=3 or ID=4.

(Since Exclude = 1, that means DB1 will not get integrity checks).

 All other databases will use the settings from the row with ID=1 (for CheckDB) or ID=2 (for

CheckTable).

Database Include and Exclude Precedence
Minion CheckDB allows you to specify lists of databases to include in a CheckDB/CheckTable routine, in a

couple of different ways.

Include and Exclude strings
One way to identify which databases should have their integrity checked, is with the

Minion.CheckDBSettingsServer Include and Exclude fields; or, for manual executions, the @Include and

@Exclude parameters in the Minion.CheckDBMaster stored procedure.

Note: For the purposes of this discussion, we will refer to the @Include/@Exclude parameters, but be aware

that the same principles apply to the Include/Exclude fields.

@Include and @Exclude may each have one of three kinds of values:

 ‘All’ or NULL (which also means ‘All’)

 ‘Regex’

 An explicit, comma-delimited list of database names and LIKE expressions (e.g.,

@Include=’DB1,DB2%’).

Note: For this initial discussion, we are ignoring the existence of the Exclude bit, while we introduce the

Include and Exclude parameters. We’ll explain the Exclude bit concept in at the end of the section.

The following table outlines the interaction of Include and Exclude:

 @Exclude=’All’ or IS NULL @Exclude=[Specific list]

@Include=’All’ or IS
NULL

Run all CheckDBs Run all, minus databases in the
explicit @Exclude list

@Include=[Specific
list]

Run only for databases
specified in the @Include list.

Run only specific includes,
minus explicit exclude. (But,
why would you do this?)

Note that regular expressions phrases are defined in a special settings table (Minion.DBMaintRegexLookup).

Let us look at a couple of scenarios, using this table:

 @Include IS NULL, @Exclude IS NULL – Run all CheckDBs.

 @Include = ‘All’, @Exclude = ‘DB%’ – Run all CheckDBs except those beginning with “DB”.

10

Exclude bit
In addition to the @Include and @Exclude parameters, Minion CheckDB also provides an “Exclude” bit in the

primary settings table (Minion.CheckDBSettingsDB), which that allows you to exclude all operations for a

specific database.

For example, if you wished to exclude all integrity check operations for database DB1, insert two rows (one

for CheckDB and one for CheckTable) to the Minion.CheckDBSettingsDB table with Exclude = 1. From then on,

DB1 will not be included in any scheduled operation.

The following table outlines the interaction of the @Include parameter and the Exclude bit:

 Exclude=0 Exclude=1

@Include=’All’ or IS
NULL

Run all operations as
specified (CheckDB or
CheckTable)

Run all operations, minus
excluded databases’
CheckDB types

@Include=[Specific
list]

Run only specific includes

Run only specific includes

IMPORTANT: The Exclude bit, like the @Exclude parameter, only applies for instances where @Include (or

the column, “Include”) is NULL. Whether @Include is Regex or is a specific list, an explicit @Include should

be the final word. This is because we never want a scenario where a database simply cannot have CheckDB

performed.

Table Include and Exclude Precedence
Minion CheckDB allows you to specify lists of tables to include in a DBCC CheckTable routine.

Include Strings
One way to identify which tables should have their integrity checked, is with the

Minion.CheckDBSettingsServer Schemas and Tables fields; or, for manual runs, the

ExcMinion.CheckDBMaster @Schemas and @Tables parameters.

Note: For the purposes of this discussion, we will refer to the @Schemas/@Tables parameters, but be aware

that the same principles apply to the Schemas/Tables fields.

@Schemas and @Tables may each have one of two kinds of values:

 NULL (which means ‘All’)

 An explicit, comma-delimited list of database names and LIKE expressions (e.g.,

@Schemas=’Sch1,Sch2%’).

Note: For this initial discussion, we are ignoring the existence of the Exclude bit in

Minion.CheckDBSettingsTable, while we introduce the Schemas and Tables parameters. We’ll fold the

Exclude bit concept back in at the end of the section.

11

The following table outlines the interaction of Schemas and Tables:

 @Tables IS NULL @Tables=[Specific list]
@Schemas IS NULL Run all CheckTables Run only specific tables

@Schemas=[Specific
list]

Run only specific schemas

Run all tables in schemas, plus
specific tables

Note that @Schemas and @Tables do not limit each other.

Let us look at a couple of scenarios, using this table:

 @Schemas IS NULL, @Tables IS NULL – Run all CheckTabless.

 @Schemas = ‘MySchema’, @Tables = ‘DB%’ – Run all tables in “MySchema”, PLUS all tables

beginning with DB. Note that the DB% tables will automatically receive the default schema defined in

Minion.CheckDBSettingsDB, because there is no schema provided within the @Tables parameter.

Exclude Bit
Minion CheckDB provides an “Exclude” bit in the Minion.CheckDBSettingsTable table, which allows you to

exclude CheckTables for a particular table.

The following table outlines the interaction of the @Schemas / @Tables parameters, and the Exclude bit:

 Exclude=0 Exclude=1

@Schemas IS NULL Run all CheckTables. Run all CheckTables except
those excluded.

@Schemas=[Specific
list]

Run CheckTables only for
tables in the listed
schemas.

Run CheckTables for tables
in the listed schemas,
except those excluded.

@Tables IS NULL Run all CheckDBs. Run all CheckTables except
those excluded.

@Tables=[Specific
list]

Run Checktables only for
the listed tables.

Run CheckTables only for
the listed tables; ignores
the Exclude bit in the
settings table.

Let us look at a handful of scenarios, using this table:

 @Schemas=’Minion’, @Exclude = 1 for Minion.T1 – Run all CheckTables except Minion.T1

 @Tables IS NULL, Exclude bit=0 – Run all CheckTables.

 @Tables= ‘dbo.T1’, Exclude = 1 for DB2 (Minion.CheckDBSettingsDB) – Run CheckTable for dbo.T1.

IMPORTANT: You will note that the Exclude bit is ignored in any case where Tables is not NULL. An explicit

@Tables should be the final word. The reason for this rule is that we never want a scenario where a table

simply cannot have CheckTable performed.

12

Run Time Configuration
The main Minion CheckDB stored procedure – Minion.CheckDBMaster – can be run in one of two ways: with

table configuration, or with parameters.

Run Minion.CheckDBMaster using table configuration: If you run Minion.CheckDBMaster without

parameters, the procedure uses the Minion.CheckDBSettingsServer table to determine its runtime

parameters (including the schedule of DBCC CheckDB and DBCC CheckTable jobs, and which databases to

Include and Exclude). This is how MC operates by default, to allow for the most flexible integrity check

scheduling with as few jobs as possible.

For more information, see the sections “How To: Change Schedules”, “Minion.CheckDBSettingsServer”, and

“Minion.CheckDBMaster”.

Run Minion.CheckDBMaster with parameters: The procedure takes a number of parameters that are specific

to the current maintenance run. For example:

 Use @DBType to specify ‘System’ or ‘User’ databases.

 Use @OpName to specify CHECKDB, CHECKTABLE, or AUTO.

 Use @StmtOnly to generate integrity check statements, instead of running them.

 Use @Include to specify a specific list of databases, or databases that match a LIKE expression.

Alternately, set @Include=’All’ or @Include=NULL to include all databases.

 Use @Exclude to exclude a specific list of databases from CheckDB.

 Use @ReadOnly:

1. to include ReadOnly databases,

2. to exclude ReadOnly databases, or

3. to only include ReadOnly databases.

For more information, see the section “How To: Change Schedules” and “Minion.CheckDBMaster”.

13

Moving Parts

Overview of Tables
The tables in Minion CheckDB fall into four categories: those that store configured settings, those that log

operational information, debug tables, and work tables.

The settings tables are:

 Minion.CheckDBSettingsAutoThresholds – This table allows you to set thresholds to automate whether

databases get a CheckDB operation, or a CheckTable operation.

 Minion.CheckDBSettingsDB – This table contains the essential CheckDB and CheckTable settings for

databases, including processing order, history retention, database pre-and postcode, native settings, and

more. It holds settings at the default level, database level, and operation level. You may insert rows to

define CheckDB/CheckTable settings per database (etc); or, you can rely on the system-wide default

settings (defined in the “MinionDefault” rows); or a combination of these.

 Minion.CheckDBSettingsRemoteThresholds – This table allows you to define thresholds to prevent

smaller databases from taking part in remote DBCC CheckDB operations.

 Minion.CheckDBSettingsRotation – This table holds the rotation scenario for your operations (e.g., “run

CheckDB on 10 databases every night; the next night, process the next 10; and so on”).

 Minion.CheckDBSettingsServer – This table contains server-level CheckDB settings, including schedule

information. The primary Minion CheckDB job “MinionCheckDB-AUTO” runs regularly in conjunction with

this table to provide a wide range of CheckDB options, all without introducing additional SQL Agent jobs.

 Minion.CheckDBSettingsSnapshot – This table holds the settings for database snapshots.

 Minion.CheckDBSettingsTable – Minion.CheckDBSettingsTable allows you to configure table-level

exceptions to the CHECKTABLE settings defined in Minion.CheckDBSettingsDB.

 Minion.CheckDBSnapshotPath – This table allows you to configure snapshot file path settings for local

custom snapshots. You can specify one row per snapshot file.

The log tables are:

 Minion.CheckDBLog – Holds an operation-level summary of integrity check operations. It contains one

time-stamped row for each execution of Minion.CheckDBMaster, which may encompass several

database level integrity check operations. This is updated as each CheckDB occurs, so that you have Live

Insight into active operations.

 Minion.CheckDBLogDetails – Holds a log of CheckDB activity at the database level. This table is updated

as each operation occurs, so that you have Live Insight into active operations.

 Minion.CheckDBResult – Keeps the results from DBCC CheckDB operations (as opposed to outcome and

associated operational data in the “Log” tables).

 Minion.CheckDBSnapshotLog – This table keeps a record of snapshot files (one row per file). This

includes files created as part of local custom snapshots, and as part of snapshot files created locally from

a remote server’s “remote CheckDB” process.

14

 Minion.CheckD BCheckTableResult – This keeps the results from DBCC CheckTable operations (as

opposed to outcome and associated operational data in the “Log” tables).

The debug tables are:

 Minion.CheckDBDebug – This table holds high level debugging data from Minion CheckDB runs

where debugging was enabled.

 Minion.CheckDBDebugLogDetails – This table holds detailed debugging data from Minion CheckDB

runs where debugging was enabled.

 Minion.CheckDBDebugSnapshotCreate – This table holds custom snapshot-related debugging data

from Minion CheckDB runs where debugging was enabled.

 Minion.CheckDBDebugSnapshotThreads – This table holds thread-related debugging data from

Minion CheckDB runs where debugging was enabled.

The work tables – which are for internal use, and so are not fully documented – are:

 Minion.CheckDBCheckTableThreadQueue – Information gathered in preparation for a CheckTable

run is stored here.

 Minion.CheckDBRotationDBs – Internal use only.

 Minion.CheckDBRotationDBsReload – Internal use only.

 Minion.CheckDBRotationTables – Internal use only.

 Minion.CheckDBRotationTablesReload – Internal use only.

 Minion.CheckDBTableSnapshotQueue – Internal use only.

 Minion.CheckDBThreadQueue – Internal use only.

Settings Table Detail

Minion.CheckDBSettingsAutoThresholds
This table allows you to automate whether databases get a DBCC CheckDB operation, or a DBCC CheckTable

operation. These settings only apply to runs of the stored procedure Minion.CheckDBMaster where OpName

= ‘Auto’ in Minion.CheckDBSettingsDB (or, for a manual run, where @OpName = ‘Auto’).

The default entry that comes installed with Minion CheckDB sets a threshold by size, at 100 GB. What this

means is that by default – when Minion.CheckDBMaster runs with @OpName = ‘Auto’, any database under

100 GB gets a CheckDB operation instead of a CheckTable operation.

Note: As outlined in the “Configuration Settings Hierarchy” section, more specific settings in a table take

precedence over less specific settings. So if you insert a database-specific row for DB1 to this table, that row

will be used for DB1 (instead of the “MinionDefault” row in this table).

Name Type Description

ID int Primary key row identifier.

DBName varchar Database name.
ThresholdMethod varchar The method by which to measure.

15

Valid values:
SIZE

ThresholdType varchar The threshold type, as it relates to
ThresholdMethod.

NULL (this is the same as Data)
Data
DataAndIndex
File

ThresholdMeasure Varchar The measure for our threshold value.

Valid inputs:
GB

ThresholdValue Int The correlating value to ThresholdMeasure. If
ThresholdMeasure is GB, then ThresholdValue
is the value – the number of gigabytes.

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Example:

-- Insert a row for DB1, threshold 50GB
INSERT INTO Minion.CheckDBSettingsAutoThresholds
 ([DBName]
 , [ThresholdMethod]
 , [ThresholdType]
 , [ThresholdMeasure]
 , [ThresholdValue]
 , [IsActive]
 , [Comment]
)
SELECT 'DB1' AS [DBName]
 , 'Size' AS [ThresholdMethod]
 , 'DataAndIndex' AS [ThresholdType]
 , 'GB' AS [ThresholdMeasure]
 , 50 AS [ThresholdValue]
 , 1 AS [IsActive]
 , 'DB1' AS [Comment];

Minion.CheckDBSettingsDB
Minion.CheckDBSettingsDB contains the essential CheckDB settings for databases, including process order,

history retention, pre-and postcode, native settings, and more.

16

Minion.CheckDBSettingsDB is installed with default settings already in place, via the system-wide default

rows (identified by DBName = “MinionDefault”). If you do not need to fine tune your integrity checks at all,

no action is required, and all operations will use these default configurations.

IMPORTANT: Do not delete the MinionDefault rows!

For more information on DBCC CheckDB options, see the MSDN article on DBCC CHECKDB

(https://msdn.microsoft.com/en-us/library/ms176064.aspx).

Name Type Description

ID Int Primary key row identifier.
DBName nvarchar Database name.

Port int Port number for the instance. If this is NULL,
we assume the port number is 1433.

Minion CheckDB includes the port number
because certain operations that are shelled out
to sqlcmd require it.

OpLevel varchar The level of object that the operation applies
to.

Note: This is not currently in use, but we
recommend setting all OpLevel values to ‘DB’
for future functionality.

Valid values:
DB

OpName Varchar The name of the operation (usually, as passed
into Minion.CheckDBMaster).

Note: Each level of settings (that is, the default
level, and each database level) should have
one row for CHECKTABLE and one row for
CHECKDB. For more information, see
“Configuration Settings Hierarchy”.

Note that AUTO is a valid value for the
Minion.CheckDBMaster @OpName parameter,
but it is NOT valid as a setting in this table
(which defines settings for specific operations).

Valid values:
CHECKTABLE
CHECKDB
CHECKALLOC

Exclude Bit Exclude database from operations.

https://msdn.microsoft.com/en-us/library/ms176064.aspx

17

For more on this topic, see “How To: Exclude
databases from operations” and “Include and
Exclude Precedence”.

GroupOrder int The operation order within a group. Used
solely for determining the order in which
databases should be processed.

By default, all databases and tables have a
value of 0, which means they’ll be processed in
the order they’re queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be processed
earlier than lower numbers. We recommend
leaving some space between assigned order
numbers (e.g., 10, 20, 30) so there is room to
move or insert rows in the ordering.

For more information, see “How To: Process

databases in a specific order”.
GroupDBOrder int Group to which this database belongs. Used

solely for determining the order in which
databases should be processed.

By default, all databases have a value of 0,
which means they’ll be processed in the order
they’re queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be processed
earlier than lower numbers. The range of
GroupDBOrder weight numbers is 0-255.

For more information, see “How To: Process

databases in a specific order”.
NoIndex bit Enable NOINDEX.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

RepairOption varchar The repair option to use.

This field is not yet in use.

Future valid values may include:
NULL
NONE
REPAIR_ALLOW_DATA_LOSS

REPAIR_FAST

https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx

18

REPAIR_REBUILD

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

RepairOptionAgree bit Signifies that you agree to the repair option
specified in the RepairOption column. This is in
place because some repair options (i.e.,
“REPAIR_ALLOW_DATA_LOSS”) can
cause you to lose data.

This field is not yet in use.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

WithRollback varchar This field is not yet in use.

AllErrorMsgs bit Enables or disables the ALL_ERRORMESSAGES
option, which displays all reported errors per
object. This is on by default.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

ExtendedLogicalChecks bit Enables or disables the
EXTENDED_LOGICAL_CHECKS option, which
performs logical consistency checks where
appropriate.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

NoInfoMsgs bit Enables or disables the NO_INFOMSGS option,
which supresses informational messages.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

IsTabLock Bit DBCC CheckDB option -tablock. Causes DBCC
CHECKDB to obtain locks instead of using an
internal database snapshot.

IMPORTANT: We do not recommend using
tablock on production systems!

https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx

19

IntegrityCheckLevel varchar DBCC CheckDB option. This controls whether
or not you include physical only, data purity, or
neither.

Valid values:
NULL
PHYSICAL_ONLY
DATA_PURITY

DisableDOP bit Enable or disable the trace flag that allows
CheckDB to run with a degree of parallelism.
Allows you to use or not use multithreading.

Note: DisableDOP = 1 will disable DBCC
CheckDB internal multithreading. However,
Minion CheckDB multithreading is not affected
by this setting.

For more information, see “About:
Multithreading operations”.

IsRemote bit Enable or disable remote integrity checks.

Note: Remote operations only apply to DBCC
CheckDB. MC does not support remote
CheckTable.

IMPORTANT: IsRemote = 1 turns on remote
CheckDB for all databases (that the given row
applies to). If you wish to handle remote
operations dynamically, based on database
size, set IsRemote = 0 and configure remote
thresholds.

Performing remote integrity checks requires
additional setup. See
“Minion.CheckDBSettingsRemoteThresholds”
and “How to: Set up CheckDB on a Remote
Server”.

PreferredServer varchar The server on which you would like to perform
remote CheckDB operations.

Note: This field does not accept Inline Tokens.

Valid inputs:
NULL
<specific server or server\instance name>

For more information, see “How to: Set up
CheckDB on a Remote Server”.

PreferredServerPort int The port of the server on which you would like
to perform remote CheckDB operations.

20

If this value is NULL, the port is assumed to be
1433.

Valid values:
NULL
<specific port>

PreferredDBName varchar The database you want to run remote checks
against on the remote server. This field is
ignored if you’re running operations locally.

Note: Remote operations only apply to DBCC
CheckDB. MC does not support remote
CheckTable.

This field accepts Inline Tokens and LIKE
expressions.

Valid values:
NULL
<specific database name>

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

RemoteJobName varchar The name of the temporary CheckDB job on
the remote server.

If the RemoteCheckDBMode is “Connected”,
this can be NULL. Otherwise, RemoteJobName
must be populated.

This field accepts Inline Tokens.

Valid values:
NULL
<job name>

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

RemoteCheckDBMode varchar The mode of the remote CheckDB operation, if
any.

NULL means that remote CheckDB is not in use
for this entry.
Connected mode runs CheckDB from the local
server against the remote server (very like
running it against a remote server from SQL
Server Management Studio).

21

Disconnected mode creates a setup so that
CheckDB runs entirely on the remote server.
All objects are created on the remote server,
and the remote server runs operations
independently and reports back.

Note: Connected mode has fewer moving
parts; but Disconnected mode has higher
tolerance for things like network fluctuations.

Valid values:
Connected
Disconnected

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

RemoteRestoreMode varchar The method by which MC will restore a backup
to the remote server, for remote integrity
check operations.

Note: Remote restores apply only to CheckDB
operations, not CheckTable.

Valid values:
NONE
LastMinionBackup
NewMinionBackup

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

DropRemoteDB bit Determines whether the remote CheckDB
process drops the remote database after the
operation.

You might not want to drop the database if, for
example, it’s supposed to be there for
development or QA purposes.

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

DropRemoteJob bit Determines whether the remote CheckDB
process drops the remote database after the
operation.

By default, this should be enabled.

22

For more information, see “About: Remote
CheckDB” and “How to: Set up CheckDB on a
Remote Server”.

LockDBMode varchar This field is not yet in use.

ResultMode varchar This determines how much detail of the
integrity check results to keep in the
Minion.CheckDBResult table.

NULL and SUMMARY will keep only the rows
like ‘CHECKDB found%allocation errors and
%consistency errors in database%’.

FULL will keep everything from a run.

NONE keeps nothing from a run.

Valid values:
NULL (this is the same as SUMMARY)
SUMMARY
FULL
NONE

HistRetDays int Number of days to retain a history of
operations (in Minion CheckDB log tables).

Minion CheckDB does not modify or delete
information in system tables.

Note: This setting is also optionally
configurable at multiple levels. So, you can
keep log history for different amounts of time
for one database vs another

PushToMinion varchar Determines whether log data is only stored on
the local (client) server, or on both the local
server and the remote server.

Valid values will include:
Local
Remote

MinionTriggerPath varchar UNC path where the Minion logging trigger file
is located.

Not applicable for a standalone Minion
CheckDB instance.

AutoRepair varchar This field is not yet in use.

AutoRepairTime varchar This field is not yet in use.
DefaultSchema varchar If you define specific tables to undergo DBCC

CHECKTABLE, and you do not define a schema
for those tables, then the system uses this
DefaultSchema.

23

Note: This only applies to rows with
OpName=CHECKTABLE.

If you leave this value NULL, MC will
automatically use the dbo schema.

DBPreCode varchar Code to run for a database, before the
operation begins for that database.

For more on this topic, see “How To: Run code
before or after integrity checks”.

DBPostCode varchar Code to run for a database, after the operation
completes for that database.

For more on this topic, see “How To: Run code
before or after integrity checks”.

TablePreCode varchar Code to run for a database, before the
operation begins for each included table.

For more on this topic, see “How To: Run code
before or after integrity checks”.

TablePostCode varchar Code to run for a database, after the operation
completes for each included table.

For more on this topic, see “How To: Run code
before or after integrity checks”.

StmtPrefix nvarchar This column allows you to prefix every integrity
check statement with a statement of your
own. This is different from the precode and
postcode, because it is run in the same batch.
Whereas, precode and postcode are run as
completely separate statements, in different
contexts.

Code entered in this column MUST end in a
semicolon.

For more on this topic, see “How To: Run code
before or after integrity checks”.

StmtSuffix nvarchar This column allows you to suffix every integrity
check statement with a statement of your
own. This is different from the precode and
postcode, because it is run in the same batch.
Whereas, precode and postcode are run as
completely separate statements, in different
contexts.

Code entered in this column MUST end in a
semicolon.

24

For more on this topic, see “How To: Run code
before or after integrity checks”.

DBInternalThreads tinyint The number of CheckTable operations to run
simultaneously.

Note: If you specify DBInternalThreads in

Minion.CheckDBSettingsServer, that value

takes precedence over this field.

Warning: You can max out server resources
very quickly if you use too many concurrent
operations. If for example you’re running 5
databases simultaneously, and each of those
operations runs 10 tables simultaneously, that
can add up very quickly!

DefaultTimeEstimateMins Int How long you estimate the operation will take,
in minutes.

If you want to limit the operation based off of
time (e.g., run for two hours), and the
database has never been run before. So, the
system has no way to know how long the
operation will take.

LogSkips bit Whether or not you want to log skipped
objects.

For example: You have limited the operation to
an hour, and it is cycling through CheckTable
opeartions. Some tables will be skipped if the
time limit is exceeded. Do you want to add
those to the log, to see which ones were
skipped?

It can be a good idea to set LogSkips to 0 (i.e.,
“do not log tables that were skipped”) if you
routinely have a very high number of tables
that will be skipped; this prevents log bloat.

BeginTime varchar The start time at which this configuration
applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime Varchar The end time at which this configuration
applies.

25

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

DayOfWeek varchar The day or days to which the settings apply.

Valid inputs:
Daily
Weekday
Weekend
[an individual day, e.g., Sunday]

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

IMPORTANT: Remote restores apply only to CheckDB operations, not CheckTable.

Minion.CheckDBSettingsRemoteThresholds
Minion CheckDB provides remote integrity checks, where a database may be restored to another instance for

DBCC CheckDB operations. This table allows you to define thresholds to prevent smaller databases from

taking part in remote CheckDB operations.

Note: Remote operations only apply to DBCC CheckDB. MC does not support remote CheckTable.

Minion.CheckDBSettingsRemoteThresholds is very similar to Minion.CheckDBSettingsAutoThresholds, except

that this table does not have a ThresholdMethod column; the method here will only ever be size.

To turn on this feature, Minion.CheckDBSettingsDB IsRemote must be set to 0. While this may seem

counterintuitive, IsRemote = 1 turns on remote CheckDB for all databases (that the given row applies to). If

you wish to handle remote operations dynamically, based on database size, set IsRemote = 0 – meaning, “I

want operations to be local unless a database crosses the threshold”.

For full instructions on configuring remote CheckDB, see the remote thresholds section of “How to: Set up

CheckDB on a Remote Server”. Also see “About: Remote CheckDB”.

Name Type Description
ID int Primary key row identifier.

DBName varchar Database name.

ThresholdType varchar The threshold type, as it relates to
ThresholdMethod.

NULL (this is the same as Data)
Data

26

DataAndIndex
File

ThresholdMeasure varchar The measure for our threshold value.

Valid inputs:
GB

ThresholdValue int The correlating value to ThresholdMeasure. If
ThresholdMeasure is GB, then ThresholdValue
is the value – the number of gigabytes.

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Minion.CheckDBSettingsRotation
Minion CheckDB allows you to define a rotation scenario for your operations. For example, a nightly round of

10 databases would perform integrity checks on 10 databases the first night, another 10 databases the

second night, and so on.

You can also use the rotational scheduling to limit operations by time; for example, you could configure MC

to cycle through DBCC CheckDB operations for 90 minutes each night.

This table holds the rotation scenario for your operations (e.g., “run CheckDB on 10 databases every night;

the next night, process the next 10; and so on”). This table applies to both CheckDB and CheckTable

operations.

For more information, see “About: Rotational Scheduling” and “How to: Configure Rotational Scheduling”.

Name Type Description
ID bigint Primary key row identifier.

DBName varchar Database name.

Note that this field only applies to rows with
OpName = ‘CHECKTABLE’. For CHECKDB rows,
feel free to use ‘MinionDefault’ or leave it
NULL.

OpName varchar The name of the operation to be performed.

Valid values:
CHECKTABLE
CHECKDB

RotationLimiter varchar The method by which to limit the rotation.

DBCount limits the number of databases
processed in a single operation; this only
applies to CHECKDB operations.

27

TableCount limits the number of tables
processed in a single operation; this only
applies to CHECKTABLE operations.

Time limits the operation by a number of
minutes.

Valid values:
DBCount
TableCount
Time

RotationLimiterMetric varchar The metric by which the RotationLimiter is
defined.

In Minion CheckDB 1.0, each RotationLimiter
has only one possible metric: DBCount and
count, TableCount and count, Time and Mins
(minutes).

Valid values:
Count
Mins

RotationMetricValue int The number associated with the
RotationLimiter, e.g., 10 for 10 databases, or
120 for 120 Mins.

RotationPeriodInDays int This field is not yet in use.

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Minion.CheckDBSettingsServer
This table contains server-level integrity check settings, including schedule information. The primary Minion

CheckDB job “MinionCheckDB-AUTO” runs regularly in conjunction with this table to provide a wide range of

CheckDB options, all without introducing additional jobs.

Name Type Description
ID int Primary key row identifier.

DBType varchar Database name.

OpName varchar The name of the operation (usually, as passed
into Minion.CheckDBMaster).

The AUTO option allows Minion CheckDB to
choose the appropriate operation per
database, based on settings in the
Minion.CheckDBSettingsAutoThresholds table.
For more information on this, see the section

28

titled “How to: Configure Minion CheckDB
Dynamic Thresholds”.

Valid values:
CHECKTABLE
CHECKDB
AUTO
CHECKALLOC

Day varchar The day or days to which the settings apply.

See the discussion below for information
about Day hierarchy and precedence.

Note that the least frequent “Day” settings –
FirstOfYear, LastOfYear, FirstOfMonth,
LastOfMonth – only apply to user databases,
not to system databases.

Valid values:
Daily
Weekday
Weekend
[an individual day, e.g., Sunday]
FirstOfMonth
LastOfMonth
FirstOfYear
LastOfYear

ReadOnly tinyint Readonly option; this decides whether or not
to include ReadOnly databases in the
operation, or to perform operations on only
ReadOnly databases.

A value of 1 includes ReadOnly databases; 2
excludes ReadOnly databases; and 3 only
includes ReadOnly databases.

Valid values:
1
2
3

BeginTime varchar The start time at which this schedule applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime varchar The end time at which this schedule applies.

29

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

MaxForTimeframe int Maximum number of iterations within the
specified timeframe (BeginTime to EndTime).

For more information, see “Table based
scheduling” in the “Quick Start” section.

FrequencyMins int The frequency (in minutes) that the operation
should occur.

Note that actual frequency also depends on
the SQL Agent job schedule. If FrequencyMins
= 60, but the job runs every 12 hours, you will
only get this operation every 12 hours.

However, if FrequencyMins = 720 (12 hours)
and the job runs every hour, this CheckDB will
occur every 720 minutes.

CurrentNumOps int Count of operation attempts for the particular
DBType, OpName, and Day, for the current
timeframe (BeginTime to EndTime).

NumConcurrentOps tinyint The number of concurrent processes used.

This is the number of databases that will be
processed simultaneously. This applies to both
DBCC CheckDB or DBCC CheckTable.

Warning: You can max out server resources
very quickly if you use too many concurrent
operations.

For more information, see “About:
Multithreading operations”.

DBInternalThreads tinyint The number of tables that will be processed in
parallel.

This only applies to DBCC CheckTable
operations.

This setting overrides the DBInternalThreads
column in Minion.CheckDBSettingsDB.

Warning: You can max out server resources
very quickly if you use too many concurrent
operations.

30

For more information, see “About:
Multithreading operations”.

TimeLimitInMins int The time limit to impose on this opertion, in

minutes.

LastRunDateTime datetime The last time an operation ran that applied to
this particular scenario (DBType, OpName,
Day, and timeframe).

Include nvarchar The value to pass into the @Include parameter
of the Minion.CheckDBMaster job; in other
words, the databases to include in this
attempt. This may be left NULL (meaning “all
databases”).

Exclude nvarchar The value to pass into the @Exclude
parameter of the Minion.CheckDBMaster job;
in other words, the databases to exclude from
this attempt. This may be left NULL (meaning
“no exclusions”).

Schemas nvarchar The schemas on which to perform operations.

May be a single schema, an explicit list, and/or
LIKE expressions.

Applies only to CHECKTABLE operations.

Note that schemas apply to all databases. If you

choose to limit to the dbo schema, the
operation is limited to the dbo schema in all
applicable databases.

Tables nvarchar The tables on which to perform operations.

May be a single schema, an explicit list, and/or
LIKE expressions.

Applies only to CHECKTABLE operations.

Note that tables apply to all databases. If you

choose to limit to tables named ‘T%’ schema,
the operation is limited to ‘T%’ tables in all
applicable databases.

BatchPreCode varchar Precode to run before the entire operation.

BatchPostCode varchar Precode to run after the entire operation.
Debug bit Enable logging of special data to the debug

tables.

For more information, see
“Minion.CheckDBDebug” and
“Minion.CheckDBDebugLogDetails”.

FailJobOnError bit Cause the job to fail if an error is encountered.
If an error is encountered, the rest of the
batch will complete before the job is marked
failed.

31

FailJobOnWarning bit Cause the job to fail if a warning is
encountered. If a warning is encountered, the
rest of the batch will complete before the job
is marked failed.

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Example: Daily PHYSICAL_ONLY, weekly complete full DBCC CHECKDB

We can use this table to define a new integrity check time scenarios:

 Full system DBCC CheckDBs on Saturday, one time between 6pm and 11pm.

 Full user DBCC CheckDBs on Sunday, one time between 6pm and 11pm.

 PHYSICAL_ONLY system DBCC CheckDBs on every other day (Monday-Friday), one time each

between 6pm and 11pm.

The basic process is:

1. Make sure the Minion CheckDB job runs frequently enough.

2. Schedule the operations in Minion.CheckDBSettingsServer.

3. Configure the settings, and when they apply, in Minion.CheckDBSettingsDB.

Make sure the Minion CheckDB job runs frequently enough. Set the MinionCheckDB-AUTO job to run at

least daily during the 6pm-11pm window.

Schedule the operations in Minion.CheckDBSettingsServer. Define the following rows. (Note that some of

the table columns are omitted here, for presentation purposes.)

ID DBType OpName Day ReadOnly BeginTime EndTime MaxForTimeframe

1 System CHECKDB Saturday 1 18:00:00 23:00:00 1
2 User CHECKDB Sunday 1 18:00:00 23:00:00 1

3 System CHECKDB Weekday 1 18:00:00 23:00:00 1

Note that if you have two operations slated for the same window of time, a System database operation takes

precedence over a User database operation; and a CHECKDB or AUTO operation takes precedence over a

CHECKTABLE operation.

Configure the settings, and when they apply, in Minion.CheckDBSettingsDB. The schedule above doesn’t

actually cover the “PHYSICAL_ONLY” aspect for our scenario. So, we must configure PHYSICAL_ONLY in

Minion.CheckDBSettingsDB, with the proper time window. The following statement inserts rows for

PHYSICAL_ONLY that applies to Weekdays (one row for CheckDB settings and one for CheckTable settings):

INSERT INTO [Minion].CheckDBSettingsDB

32

([DBName], [OpLevel], [OpName], [Exclude], [GroupOrder], [GroupDBOrder],
 [NoIndex], [RepairOption], [RepairOptionAgree], [AllErrorMsgs],
 [ExtendedLogicalChecks], [NoInfoMsgs], [IsTabLock], [IntegrityCheckLevel],
 [IsRemote], [ResultMode], [HistRetDays], [DefaultSchema], [DBInternalThreads],
 [LogSkips], [BeginTime], [EndTime], [DayOfWeek], [IsActive], [Comment]
)
 VALUES (' MinionDefault' -- DBName
 , 'DB' -- OpLevel
 , 'CHECKDB' -- OpName
 , 0 -- Exclude
 , 0 -- GroupOrder
 , 0 -- GroupDBOrder
 , 0 -- NoIndex
 , 'NONE' -- RepairOption
 , 0 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 0 -- ExtendedLogicalChecks
 , 0 -- NoInfoMsgs
 , 0 -- IsTabLock
 , 'PHYSICAL_ONLY' -- IntegrityCheckLevel
 , 0 -- IsRemote
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 'dbo' -- DefaultSchema
 , 1 -- DBInternalThreads
 , 1 -- LogSkips
 , '00:00:00' -- BeginTime
 , '23:59:00' -- EndTime
 , 'Weekday' -- DayOfWeek
 , 1 -- IsActive
 , 'MinionDefault PHYSICAL_ONLY CHECKDB on weekdays.') -- Comment
 ,
 (' MinionDefault' -- DBName
 , 'DB' -- OpLevel
 , 'CHECKTABLE' -- OpName
 , 0 -- Exclude
 , 0 -- GroupOrder
 , 0 -- GroupDBOrder
 , 0 -- NoIndex
 , 'NONE' -- RepairOption
 , 0 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 0 -- ExtendedLogicalChecks
 , 0 -- NoInfoMsgs
 , 0 -- IsTabLock

, 'PHYSICAL_ONLY' -- IntegrityCheckLevel
 , 0 -- IsRemote
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 'dbo' -- DefaultSchema

33

 , 1 -- DBInternalThreads
 , 1 -- LogSkips
 , '00:00:00' -- BeginTime
 , '23:59:00' -- EndTime
 , 'Weekday' -- DayOfWeek
 , 1 -- IsActive
 , 'MinionDefault PHYSICAL_ONLY CheckTable on weekdays.'); -- Comment

We also need to update the two existing ‘MinionDefault’ rows, so they only apply to the weekend:

UPDATE Minion.CheckDBSettingsDB
SET DayOfWeek = 'Weekend'
WHERE DBName = 'MinionDefault'
 AND IntegrityCheckLevel IS NULL;

The final result in Minion.CheckDBSettingsDB is:

DBName OpLevel OpName IntegrityCheckLevel BeginTime EndTime DayOfWeek
MinionDefault DB CHECKDB NULL 00:00:00 23:59:00 Weekend

MinionDefault DB CHECKTABLE NULL 00:00:00 23:59:00 Weekend

MinionDefault DB CHECKDB PHYSICAL_ONLY 00:00:00 23:59:00 Weekday
MinionDefault DB CHECKTABLE PHYSICAL_ONLY 00:00:00 23:59:00 Weekday

Minion.CheckDBSettingsSnapshot
This table holds the settings for custom database snapshots.

“A database snapshot is a read-only, static view of a SQL Server database (the source database). The
database snapshot is transactionally consistent with the source database as of the moment of the
snapshot's creation. A database snapshot always resides on the same server instance as its source
database. As the source database is updated, the database snapshot is updated.”
- MSDN article “Database Snapshots” (https://msdn.microsoft.com/en-us/library/ms175158.aspx)

When you run DBCC CheckDB or DBCC CheckTable, behind the scenes SQL Server creates a snapshot of the

database to run the operation against. SQL Server decides where to place the files for these snapshots, and

deletes the snapshot after the operation is complete.

If your version of SQL Server supports it, you can also choose to create a custom snapshot

(CustomSnapshot=1). For more information, and to learn how to configure custom snapshots, see “About:

Custom Snapshots” and “How to: Configure Custom Snapshots”.

Note: SQL Server 2016 and earlier versions only allow custom snapshots for Enterprise edition. SQL Server

2016 SP1 allow custom snapshots in any edition.

https://msdn.microsoft.com/en-us/library/ms175158.aspx
https://msdn.microsoft.com/en-us/library/ms175158.aspx

34

Note that Minion CheckDB comes with two “MinionDefault” rows in this table – one for CHECKDB and one

for CHECKTABLE – both with CustomSnapshot = 0. These are example rows so you can easily enable custom

snapshots.

Name Type Description
ID int Primary key row identifier.

DBName varchar Database name.

OpName varchar The name of the operation (usually, as passed
into the Minion.CheckDBMaster procedure
from Minion.CheckDBSettingsDB).

Valid values:
CHECKTABLE
CHECKDB

CustomSnapshot bit Enable or disable custom snapshots.

IMPORTANT: If custom snapshots are enabled,
MC requires active rows in
Minion.CheckDBSnapshotPath to determine
where the custom snapshot will go.

Note: If CustomSnapshot is enabled and your
version of SQL Server doesn’t support it, that
integrity check operation will complete using
the default internal snapshot. For more
information, see the “Custom snapshots fail”
section under Troubleshooting.

SnapshotRetMins int The number of minutes to retain a snapshot,
before recreating it. This only applies to rows
with OpName=’CHECKTABLE’.

For more information, see “How to: Configure
Custom Snapshots”.

SnapshotRetDeviation int This field is not yet in use.

DeleteFinalSnapshot bit Whether to delete the last snapshot taken
during an operation.

SnapshotFailAction varchar The action to take if the custom snapshot fails.
For example, if you the custom snapshot
location doesn’t exist, or you don’t have
permissions to it, or some other problem
exists, then this field determines how to
proceed.

FAIL will fail with a logged error. Default
behavior.
CONTINUE will allow MC to continue with an
internal snapshot, and will log the error in the
Warnings column of the log table.

35

Valid values:
NULL <this is the same as FAIL>
FAIL
CONTINUE
CONTINUEWITHTABLOCK

BeginTime Varchar The start time at which these settings apply.
Can be NULL, meaning “no start limit”.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime varchar The end time at which these settings apply.
Can be NULL, meaning “no end limit”.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

DayOfWeek varchar The day or days to which the settings apply.

Valid inputs:
NULL (meaning, all days)
Daily
Weekday
Weekend
[an individual day, e.g., Sunday]

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Minion.CheckDBSettingsTable
Minion.CheckDBSettingsTable allows you to configure table-level exceptions to the CHECKTABLE settings

defined in Minion.CheckDBSettingsDB.

IMPORTANT: Minion.CheckDBSettingsDB must have settings for CHECKTABLE operations defined. This table is

used to define individual exceptions.

For more information on DBCC CheckTable options, see the DBCC CheckTable article on MSDN:

https://msdn.microsoft.com/en-us/library/ms174338.aspx

https://msdn.microsoft.com/en-us/library/ms174338.aspx

36

Name Type Description
ID int Primary key row identifier.

DBName varchar Database name. Required.
SchemaName varchar Schema name. Required.

TableName varchar Table name. Required.
IndexName varchar This field is not yet in use.

Exclude bit Exclude database (or, if specified, the specific
table) from operations.

For more on this topic, see “How To: Exclude
databases from operations” and “Include and
Exclude Precedence”.

GroupOrder int The operation order within a group. Used
solely for determining the order in which
tables should be processed.

By default, all tables have a value of 0, which
means they’ll be processed in the order they’re
queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be processed
earlier than lower numbers. We recommend
leaving some space between assigned order
numbers (e.g., 10, 20, 30) so there is room to
move or insert rows in the ordering.

For more information, see “How To: Process

databases in a specific order”.
GroupTableOrder int Group to which this table belongs. Used solely

for determining the order in which tables
should be processed.

By default, all tables have a value of 0, which
means they’ll be processed in the order they’re
queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be processed
earlier than lower numbers. The range of
GroupTableOrder weight numbers is 0-255.

For more information, see “How To: Process

databases in a specific order”.
DefaultTimeEstimateMins int How long you estimate the operation will take,

in minutes.

If you want to limit the operation based off of
time (e.g., run for two hours), and the table
has never been run before. So, the system has

37

no way to know how long the operation will
take.

PreferredServer varchar For remote CheckDB runs, the name of the
remote server.

TableOrderType varchar Order the table using different metrics, such as
size, usage, etc.

This field is not yet in use.

NoIndex bit DBCC CheckTable option NOINDEX. Specifies
that intensive checks of nonclustered indexes

for user tables should not be performed.
RepairOption varchar The repair option to use.

This field is not yet in use.

Future valid values may include:
NULL
NONE
REPAIR_ALLOW_DATA_LOSS
REPAIR_FAST

REPAIR_REBUILD

RepairOptionAgree bit Signifies that you agree to the repair option
specified in the RepairOption column. This is in
place because some repair options (i.e.,
“REPAIR_ALLOW_DATA_LOSS”) can
cause you to lose data.

This field is not yet in use.

AllErrorMsgs bit DBCC CheckTable option ALL_ERRORMSGS.
ExtendedLogicalChecks bit DBCC CheckTable option

EXTENDED_LOGICAL_CHECKS.

NoInfoMsgs bit DBCC CheckTable option NO_INFOMSGS.
Suppresses all informational messages.

IsTabLock bit DBCC CheckTable option -tablock. Causes
DBCC CHECKTABLE to obtain a shared table
lock instead of using an internal database
snapshot.

IMPORTANT: We do not recommend using
tablock on production systems!

ResultMode varchar This determines how much detail of the
integrity check results to keep in the
Minion.CheckDBCheckTableResult table.

NULL and SUMMARY will keep only the rows
like ‘CHECKDB found%allocation errors and
%consistency errors in database%’.

FULL will keep everything from a run.

38

NONE keeps nothing from a run.

Valid values:
NULL (this is the same as SUMMARY)
SUMMARY
FULL
NONE

IntegrityCheckLevel varchar DBCC CheckTable option. This controls
whether or not you include physical only, data
purity, or neither.

Valid values:
NULL
PHYSICAL_ONLY
DATA_PURITY

HistRetDays int Number of days to retain a history of
operations (in Minion CheckDB log tables).

Minion CheckDB does not modify or delete
information in system tables.

Note: This setting is also optionally
configurable at multiple levels. So, you can
keep log history for different amounts of time
for one database vs another.

TablePreCode varchar Code to run for a table, before the operation
begins for that table.

For more on this topic, see “How To: Run code
before or after integrity checks”.

TablePostCode varchar Code to run for a table, after the operation
begins for that table.

For more on this topic, see “How To: Run code
before or after integrity checks”.

StmtPrefix nvarchar This column allows you to prefix every integrity
check statement with a statement of your
own. This is different from the precode and
postcode, because it is run in the same batch.
Whereas, precode and postcode are run as
completely separate statements, in different
contexts.

Code entered in this column MUST end in a
semicolon.

For more on this topic, see “How To: Run code
before or after integrity checks”.

StmtSuffix nvarchar This column allows you to suffix every integrity
check statement with a statement of your

39

own. This is different from the precode and
postcode, because it is run in the same batch.
Whereas, precode and postcode are run as
completely separate statements, in different
contexts.

Code entered in this column MUST end in a
semicolon.

For more on this topic, see “How To: Run code
before or after integrity checks”.

BeginTime varchar The start time at which this configuration
applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

EndTime varchar The end time at which this configuration
applies.

IMPORTANT: Must be in the format hh:mm:ss,
or hh:mm:ss:mmm (where mmm is
milliseconds), on a 24 hour clock. This means
that both ’00:00:00’ and ’08:15:00:000’ are
valid times, but ‘8:15:00:000’ is not (because
single digit hours must have a leading 0).

DayOfWeek varchar The day or days to which the settings apply.

Valid inputs:
Daily
Weekday
Weekend
[an individual day, e.g., Sunday]

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB
process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Minion.CheckDBSnapshotPath
This table allows you to configure snapshot file path settings for local custom snapshots. You can specify one

row per snapshot file, or you can specify one location for all snapshot files using FileName=’MinionDefault’.

Note: SQL Server does not allow you to specify the snapshot log file location, and so neither does this table.

40

For more information, see “How to: Configure Custom Snapshots”.

Name Type Description
ID int Primary key row identifier.

DBName varchar Name of the origin database. ‘MinionDefault’
applies to all databases.

Valid values:
<specific database name>
MinionDefault

OpName varchar The name of the operation used.

Valid values:
CHECKDB
CHECKTABLE

FileName varchar Name of the file. ‘MinionDefault’ applies to all
files.

Valid values:
<specific file name>
MinionDefault

SnapshotDrive varchar Snapshot drive. This is only the drive letter of the
snapshot destination.

IMPORTANT: If this is drive, this must end with
colon-slash (for example, ‘M:\’). If this is UNC,
use the base path (for example, ‘\\server2\’)

SnapshotPath varchar Snapshot path. This is only the path (for
example, ‘SnapshotCheckDB\’) of the snapshot
destination.

ServerLabel varchar A user-customized label for the server name. It
can be the name of the server, server\instance,
or a label for a server.

PathOrder Int If a snapshot goes to multiple drives, then
PathOrder is used to determine the order in
which the different drives are used.

IMPORTANT: Like all ranking fields in Minion,
PathOrder is a weighted measure. Higher
numbers have a greater “weight” - they have a
higher priority - and will be used earlier than
lower numbers.

IsActive bit Whether the current row is valid (active), and
should be used in the Minion CheckDB process.

Comment Varchar For your reference only. You can label each row
with a short description and/or purpose.

41

Minion.DBMaintInlineTokens
Minion CheckDB 1.0 and MinionBackup 1.3 introduce a new feature to the Minion suite – Inline Tokens.

Inline Tokens allow you use defined patterns to create dynamic names. For example, MC comes with the

predefined Inline Token “Server” and “DBName”.

In this version of MC, inline tokens are accepted for remote CheckDB operations. Specifically, the

PreferredDBName and RemoteJobName in the Minion.CheckDBSettingsDB table:

UPDATE Minion.CheckDBSettingsDB
SET PreferredDBName = '%Server%_%DBName%',

RemoteJobName = 'MinionCheckDB_%Server%_%DBName%';

MC recognizes %Server% and %DBName% as Inline Tokens, and refers to the Minion.DBMaintInlineTokens

table for the definition. Note that custom tokens must be used with pipe delimiters, instead of percent signs:

‘|MyCustomToken|’.

For more information, see “About: Inline Tokens”.

Note that this table is shared between Minion modules.

Name Type Description
ID Int Primary key row identifier.

DynamicName varchar The name of the dynamic part, e.g., “Date”.

We recommend you do not include any special
symbols – only alphanumeric characters.

ParseMethod varchar The definition of the dynamic part.

Typically, this is a TSQL expression that
resolves to the value desired. For example, the
ParseMethod for “Millisecond” is

DATEPART(MILLISECOND,
@ExecutionDateTime)

Note: Custom inline tokens cannot use
internal variables like @ExecutionDateTime;
only SQL functions and @@ variables.

IsCustom bit Whether this is a custom dynamic part, or one
that came with the product originally.

Definition varchar This is the official description of the dynamic
part.

Example (BackupTypeExtension): “Returns a
dynamic backup file extension based on the
backup type.”

42

Note that certain built-in token definitions are
hard coded in the procedure; entries here are
simply a placeholder. So, do not modify or
disable definitions

IsActive bit The current row is valid (active), and should be
used in the Minion Backup process.

Comment varchar For your reference only. You can label each
row with a short description and/or purpose.

Log Table Detail
The data in log tables is retained according to the HistRetDays columns in Minion.CheckDBSettingsDB and

Minion.CheckDBSettingsTable.

Minion.CheckDBLog
Contains records of integrity check operations. It contains one time-stamped row for each run of

Minion.CheckDBMaster, which may encompass several database integrity check operations. This table stores

status information for the overall operation. This information can help with troubleshooting, or just

information gathering when you want to see what has happened between one backup run to the next.

Name Type Description

ID Bigint Primary key row identifier.
ExecutionDateTime datetime Date and time of the operation.

Status varchar Current status of the operation. If Live Insight is
being used the status updates will appear here.
When finished, this column will typically either
read ‘Complete’ or ‘Complete with warnings’.

If, for example, the process was halted midway
through the operation, the Status would reflect
the step in progress at the time the operation
stopped.

DBType varchar Database type.

Valid values:
System
User

OpName varchar The name of the operation (usually, as passed
into Minion.CheckDBMaster).

Valid values:
CHECKTABLE
CHECKDB
AUTO

NumConcurrentProcesses tinyint The number of concurrent processes used.

43

This is the number of databases that will be
processed simultaneously (CheckDB or
CheckTable).

DBInternalThreads tinyint If CheckTable, this is the number of tables that
will be processed in parallel.

NumDBsOnServer int Number of databases on server.

NumDBsProcessed int Number of databases processed in this
operation.

RotationLimiter varchar The method that was used to limit the rotation
(DBCount, TableCount, or Time).

RotationLimiterMetric varchar The metric by which the RotationLimiter was
defined (count, or minutes).

RotationMetricValue int The number associated with the RotationLimiter,
e.g., 10 for 10 databases, or 120 for 120 Mins.

TimeLimitInMins int The time limit imposed on this opertion, in

minutes.
ExecutionEndDateTime datetime Date and time the entire operation completed.

ExecutionRunTimeInSecs float The duration, in seconds, of the entire
operation.

BatchPreCodeStartDateTime datetime Start date of the batch precode.
BatchPostCodeStartDateTime datetime Start date of the batch postcode.

BatchPreCode varchar Precode set to run before the entire operation.
This code is set in the
Minion.CheckDBSettingsServer table.

BatchPostCode varchar Precode set to run after the entire operation.
This code is set in the
Minion.CheckDBSettingsServer table.

Schemas varchar The schema or schemas that were passed in to
the operation.

Schemas = NULL means the maintenance was
not limited by schema.

See the @Schema entry for
Minion.CheckDBMaster for more information.

Tables varchar The table or tables that were passed into the
operation.

Tables = NULL means the maintenance was not
limited by table.

See the @Table entry for
Minion.CheckDBMaster for more information.

IncludeDBs varchar A comma-delimited list of database names,
and/or wildcard strings, included in the
operation.

ExcludeDBs varchar A comma-delimited list of database names,
and/or wildcard strings, excluded from the
operation.

44

RegexDBsIncluded varchar A list of databases included in the backup
operation via the Minion CheckDB regular
expressions feature.

RegexDBsExcluded varchar A list of databases excluded from the backup
operation via the Minion CheckDB regular
expressions feature.

Minion.CheckDBLogDetails
Contains records of individual integrity check operations. It contains one time-stamped row for each

individual DBCC CheckDB or DBCC CheckTable operation. This table stores the parameters and settings that

were used during the operation, as well as status information. This information can help with

troubleshooting, or just information gathering when you want to see what has happened between one

backup run to the next.

Name Type Description
ID bigint Primary key row identifier.

ExecutionDateTime datetime Date and time of the operation.

Status varchar Current status of the operation. If Live Insight is
being used the status updates will appear here.
For a full description of status messages, see the
discussion below.

PctComplete tinyint Operation percent complete (e.g., 50%
complete).

DBName varchar Database name.

CheckDBName varchar The database name; or, the name of the
database in the case of a remote CheckDB or
custom snapshot.

ServerLabel varchar A user-customized label for the server name. It
can be the name of the server, server\instance,
or a label for a server.

NETBIOSName varchar The name of the server on which the database
resides.

If the instance is on a cluster, this will be the
name of the cluster node SQL Server was
running on. If it’s part of an Availability Group,
the NETBIOSName will be the physical name of
the Availability Group replica.

IsRemote bit Whether this is a remote CheckDB operation, or
not.

PreferredServer varchar For remote CheckDB runs, the name of the
remote server.

PreferredDBName varchar For remote CheckDB runs, the raw database
name from the Minion.CheckDBSettingsDB table
(including Inline Tokens, if any). You can use this
to compare to the CheckDBName field, to see
what the expression (if any) evaluated to.

45

RemoteCheckDBMode Varchar The mode of the remote CheckDB operation, if
any.

Valid values:
NULL
Connected
Disconnected

RemoteRestoreMode Varchar The mode of the remote restore, if any.

Valid values include:
None
LastMinionBackup
NewMinionBackup

IsClustered bit Whether or not the server is clustered.
IsInAG bit Whether or not the server is in an Availability

Group.

IsPrimaryReplica bit Whether or not the server is the primary replica.
DBType varchar Database type.

Valid values:
User
System

OpName varchar The name of the operation (usually, as passed
into Minion.CheckDBMaster).

Valid values:
CHECKTABLE
CHECKDB
AUTO

SchemaName varchar Schema name.
TableName varchar Table name.

IndexName varchar This field is not yet in use.
IndexID bigint This field is not yet in use.

IndexType varchar This field is not yet in use.
GroupOrder int The operation order within a group. Used solely

for determining the order in which databases
should be processed.

By default, all databases have a value of 0, which
means they’ll be processed in the order they’re
queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be backed up
earlier than lower numbers. We recommend
leaving some space between assigned back up
order numbers (e.g., 10, 20, 30) so there is room
to move or insert rows in the ordering.

46

For more information, see “How To: Process

databases in a specific order”.
GroupDBOrder int Group to which this database belongs. Used

solely for determining the order in which
databases should be processed.

By default, all databases have a value of 0, which
means they’ll be processed in the order they’re
queried from sysobjects.

Higher numbers have a greater “weight” (they
have a higher priority), and will be backed up
earlier than lower numbers. The range of
GroupDBOrder weight numbers is 0-255.

For more information, see “How To: Process

databases in a specific order”.
SizeInMB float Database size, in MB.
TimeLimitInMins int The time limit imposed on this opertion, in

minutes.
EstimatedTimeInSecs int The estimated time to complete the operation.

EstimatedKBperMS float The estimated speed of the operation, as
measured in KB per millisecond.

LastOpTimeInSecs int The time taken to complete the previous
operation for this database.

IncludeRemoteInTimeLimit int Whether or not the remote operation (if any) is
included in the time limit (if any).

OpBeginTime datetime Date and time of the operation start.

OpEndTime datetime Date and time of the operation end.
OpRunTimeInSecs float Operation duration, measured in seconds.

CustomSnapshot bit Whether a custom snapshot used.
MaxSnapshotSizeInMB float The total size of all snapshot files. This total

comes from Minion.CheckDBSnapshotLog.

CheckDBCmd varchar The command statement used.

AllocationErrors int Number of allocation errors found.
ConsistencyErrors int Number of consistency errors found.

NoIndex Bit Whether NOINDEX was enabled.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

RepairOption Varchar The repair option used.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx

47

RepairOptionAgree bit The RepairOptionAgree value used in the
operation. (See the Minion.CheckDBSettingsDB
and Minion.CheckDBSettingsTable entries.)

WithRollback varchar The WithRollback value used in the operation.
(See the Minion.CheckDBSettingsDB entry.)

This field is not yet in use.

AllErrorMsgs bit The value used for the DBCC option
ALL_ERRORMESSAGES.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

ExtendedLogicalChecks Bit The value used for the DBCC option
EXTENDED_LOGICAL_CHECKS.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

NoInfoMsgs bit The value used for the DBCC option
NO_INFOMSGS.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

IsTabLock Bit The value used for the DBCC option TABLOCK.

For more information, see the DBCC CheckDB
article on MSDN:
https://msdn.microsoft.com/en-
us/library/ms176064.aspx

IntegrityCheckLevel Varchar Integrity check level (ESTIMATEONLY,
PHYSICAL_ONLY).

DisableDOP bit Whether parallelism (multithreading) was
enabled or disabled.

IMPORTANT: DisableDOP = 1 disables
multithreading – i.e., processing multiple
databases at the same time – in Minion
CheckDB!

For more information, see “About:
Multithreading operations”.

LockDBMode varchar This field is not yet in use.

ResultMode varchar How much detail of the integrity check results to
keep in the Minion.CheckDBResult table. The

https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx
https://msdn.microsoft.com/en-us/library/ms176064.aspx

48

operation can save either the full results, just the
summary results, or no results.

Valid values:
FULL
SUMMARY
NONE

HistRetDays Int Number of days to retain a history of operations
(in Minion CheckDB log tables).

Minion CheckDB does not modify or delete
information in system tables.

PushToMinion varchar Determines whether log data is only stored on
the local (client) server, or on both the local
server and the remote server.

Valid values will include:
Local
Remote

MinionTriggerPath varchar UNC path where the Minion logging trigger file is
located.

Not applicable for a standalone Minion CheckDB
instance.

AutoRepair varchar This field is not yet in use.
AutoRepairTime varchar This field is not yet in use.

LastCheckDateTime datetime The last time a CheckDB operation was run (as
determined by either database properties or
Minion.CheckDBLogDetails).

LastCheckResult varchar The status of the last CheckDB operation.
DBPreCodeStartDateTime datetime The date and time that the database precode

began.

DBPreCodeEndDateTime datetime The date and time that the database precode
ended.

DBPreCodeTimeInSecs int The duration of the database precode run.

DBPreCode varchar Code that ran before the operation completed
for that database.

DBPostCodeStartDateTime datetime The date and time that the database postcode
began.

DBPostCodeEndDateTime datetime The date and time that the database postcode
ended.

DBPostCodeTimeInSecs int The duration of the database postcode run.

DBPostCode varchar Code that ran after the operation completed for
that database.

TablePreCodeStartDateTime datetime The date and time that the table precode began.

TablePreCodeEndDateTime datetime The date and time that the table precode ended.
TablePreCodeTimeInSecs int The duration of the table precode run.

TablePreCode varchar Code that ran before the operation completed
for that table.

49

TablePostCodeStartDateTime datetime The date and time that the table postcode
began.

TablePostCodeEndDateTime datetime The date and time that the table postcode
ended.

TablePostCodeTimeInSecs int The duration of the table postcode run.
TablePostCode varchar Code that ran after the operation completed for

that table.

StmtPrefix Nvarchar The code, if any, prefixed to the integrity check
statement with a statement of your own.

StmtSuffix Nvarchar The code, if any, suffixed to the integrity check
statement with a statement of your own.

ProcessingThread tinyint In a multithreaded run, the number of the
thread assigned to this operation.

Used to query with GROUP BY to see the
distribution of threads. (E.g., did one thread
handle most of the work, or was there a
reasonably good distribution of work?)

For more information, see “About:
Multithreading operations”.

Warnings varchar Warnings encountered for the operation.

Discussion – Status messages. The Status column of Minion.CheckDBLogDetails can be any of the following:

 Complete - operation completed without errors.

 Complete with errors - operation completed, but it reported errors. Check the Consistency and

AllocationErrors columns, and the Minion.CheckDBResults, table for full details.

 Complete with Warnings - operation completed, but there was an error with the process

somewhere along the way. This is usually seen on remote CheckDB operations when the process has

a problem getting the results back to the primary server. There are other circumstances that can

complete with warning. There could be problems deleting the snapshot, or something else. The

point is that the integrity check finished, but something else failed and it's impossible to say

what the state of the error reporting will be.

 Complete with Errors and Warnings - a combination of the above two.

 Complete with No Status - This means the integrity check operation completed, but we specifically

couldn't parse the error results. Again, this usually happens on remote runs when we can't figure

out how many allocation or consistency errors there are, but it could happen on a local run if

Microsoft sneaks in a new column into the result table. To get a “Complete” status, we rely on being

able to parse the output; so when you get this message, it usually means that you don't have that

return data from CheckDB/CheckTable/etc.

50

Minion.CheckDBResult
This keeps the actual results of DBCC CheckDB operations (as opposed to outcome and associated

operational data in the “Log” tables). The level of detail kept in this table per operation is determined by the

ResultMode column in Minion.CheckDBSettingsDB (e.g., SUMMARY, FULL, or NONE).

Name Type Description

ExecutionDateTime datetime Date and time of the operation.

DBName nvarchar Database name.
BeginTime datetime The date and time that the operation began.

EndTime datetime The date and time that the operation finished.
Error int The error number. (E.g., error number 8989.)

Level int The error level.

State int The error state.
MessageText varchar The message text. E.g., “CHECKDB found 0

allocation errors and 0 consistency errors in
database 'ABC'.”

RepairLevel nvarchar The repair level used for the operation.

Status int The status of the operation. (0 = Success.)
DbId int Database ID.

DbFragId int CHECKDB TABLERESULTS output; not
documented.

ObjectId bigint Object ID.

IndexID int Index ID.

PartitionId bigint Partition ID.
AllocUnitId int Allocation unit ID.

RidDBId bigint Undocumented.
RidPruId bigint Undocumented.

File int Undocumented.
Page bigint Undocumented.

Slot bigint Undocumented.

RefDbId int Undocumented.
RefPruId int Undocumented.

RefFile int Undocumented.
RefPage bigint Undocumented.

RefSlot bigint Undocumented.

Allocation int Undocumented.

Minion.CheckDBSnapshotLog
This table keeps a record of snapshot files (one row per file). This includes files created as part of local

custom snapshots.

For more information, see “How to: Configure Custom Snapshots”.

Name Type Description
ID int Primary key row identifier.

ExecutionDateTime datetime Date and time of the operation.

51

OpName varchar The name of the operation used: CHECKDB or
CHECKTABLE.

DBName varchar Name of the origin database.

SnapshotDBName varchar Name of the snapshot database.
FileID int ID of the file within database.

TypeDesc varchar Description of the file type. E.g., ROWS, LOG.

Name varchar Logical name of the file in the database.
PhysicalName varchar Operating system file name.

Size bigint The file size (in 8 KB pages).
IsReadOnly bit Whether the file is read only, or not.

IsSparse bit Whether the file is sparse, or not.
SnapshotDrive varchar Snapshot drive. This is only the drive letter of the

snapshot destination (in the format ‘M:\’, or if
this is UNC, the base path (‘\\server2\’).

SnapshotPath varchar Snapshot path. This is only the path (for
example, ‘SnapshotCheckDB\’) of the snapshot
destination.

FullPath varchar The full path without filename. For example:
“C:\SnapshotCheckDB\”.

ServerLabel varchar A user-customized label for the server name. It
can be the name of the server, server\instance,
or a label for a server.

PathOrder Int If a snapshot goes to multiple drives, then
PathOrder is used to determine the order in
which the different drives are used.

IMPORTANT: Like all ranking fields in Minion,
PathOrder is a weighted measure. Higher
numbers have a greater “weight” - they have a
higher priority - and will be used earlier than
lower numbers.

Cmd varchar The snapshot’s “CREATE DATABASE” statement
used.

MaxSizeInMB float The size of the snapshot file (not of the entire
snapshot), in MB.

Minion.CheckDBCheckTableResult
This keeps the results from DBCC CheckTable operations (as opposed to outcome and associated operational

data in the “Log” tables). The level of detail kept in this table per operation is determined by the ResultMode

column in Minion.CheckDBSettingsTable (e.g., SUMMARY, FULL, or NONE).

Name Type Description
ExecutionDateTime datetime Date and time of the operation.

DBName nvarchar Database name.
SchemaName varchar Schema name.

TableName varchar Table name.

IndexName varchar This field is not yet in use.

52

IndexType varchar This field is not yet in use.
BeginTime datetime The date and time that the operation began.

EndTime datetime The date and time that the operation finished.
Error int The error number. (E.g., error number 8989.)

Level int The error level.
State int The error state.

MessageText varchar The message text. E.g., “CHECKDB found 0
allocation errors and 0 consistency errors in
database 'ABC'.”

RepairLevel nvarchar The repair level used for the operation.
Status int The status of the operation. (0 = Success.)

DbId int Database ID.

DbFragId int CHECKDB TABLERESULTS output; not
documented.

ObjectId bigint Object ID.

IndexID int Index ID.
PartitionId bigint Partition ID.

AllocUnitId bigint Allocation unit ID.

RidDBId int Undocumented.
RidPruId int Undocumented.

File int Undocumented.
Page bigint Undocumented.

Slot bigint Undocumented.
RefDbId int Undocumented.

RefPruId int Undocumented.

RefFile bigint Undocumented.
RefPage bigint Undocumented.

RefSlot bigint Undocumented.
Allocation int Undocumented.

Debug Table Detail
Note: The data in “Debug” tables (like Minion.CheckDBDebug) is useful to Minion support. Contact us

through www.MinionWare.net for help with your Minion CheckDB scenarios and debugging.

Minion.CheckDBDebug
This table holds high level debugging data from Minion CheckDB runs where debugging was enabled. The

Minion.CheckDBCheckTable stored procedure allows you to enable debugging.

Minion.CheckDBDebugLogDetails
This table holds detailed debugging data from Minion CheckDB runs where debugging was enabled. The

Minion.CheckDBCheckTable stored procedure allows you to enable debugging.

Minion.CheckDBDebugSnapshotCreate
This table holds custom snapshot-related debugging data from Minion CheckDB runs where debugging was

enabled. The Minion.CheckDBCheckTable stored procedure allows you to enable debugging.

http://www.minionware.net/

53

Minion.CheckDBDebugSnapshotThreads
This table holds thread-related debugging data from Minion CheckDB runs where debugging was enabled.

The Minion.CheckDBCheckTable stored procedure allows you to enable debugging.

Work Table Detail
Generally speaking, the data in work tables only lasts as long as the operation they are being used for. In

other words, there is no guarantee that data in work tables will be retained for any period of time. (That’s

what log tables are for!)

Minion.CheckDBCheckTableThreadQueue
This table is for internal use. Information gathered in preparation for a CheckTable run is stored here.

You can use the stored procedure Minion.CheckDBCheckTable with @PrepOnly = 1 to populate this table,

and then modify / add / delete the results as needed for custom or dynamic solutions.

Future solutions may include instructions on how to modify this table for custom scenarios.

Minion.CheckDBRotationDBs
This table is for internal use only.

Future solutions may include instructions on how to modify this table for custom scenarios.

Minion.CheckDBRotationDBsReload
This table is for internal use only.

Minion.CheckDBRotationTables
This table is for internal use only.

Minion.CheckDBRotationTablesReload
This table is for internal use only.

Minion.CheckDBTableSnapshotQueue
This table is for internal use only. Do not modify in any way.

Minion.CheckDBThreadQueue
This table is for internal use.

Future solutions may include instructions on how to modify this table for custom scenarios.

Minion.WorkingForTheWeekend
This table is entirely made up. If you have this table in your system, that’s on you.

54

Overview of Views
Minion CheckDB comes with two views:

 Minion.CheckDBLogDetailsCurrent – Provides the most recent batch of integrity check operations.

 Minion.CheckDBLogDetailsLatest – Gets the latest operation for each database. This is different

from the “current” view, in that the current view gets the latest operation without regard to what

databases or tables were in it. In this view, we’re interested in the last time a database was run.

Overview of Procedures
 Minion.CheckDB – This procedure runs a DBCC CheckDB operation for an individual database.

 Minion.CheckDBCheckTable – This procedure runs DBCC CheckTable operations for one or more

individual tables.

 Minion.CheckDBCheckTableThreadRunner – Internal use only.

 Minion.CheckDBMaster – The Minion.CheckDBMaster procedure is the central procedure of Minion

CheckDB. It uses the parameter and/or table data to make all the decisions on which databases to

run CheckDB, and what order they should be in.

 Minion.CheckDBRemoteRunner – Internal use only.

 Minion.CheckDBRotationLimiter – Internal use only.

 Minion.CheckDBSnapshotDirCreate – Internal use only.

 Minion.CheckDBSnapshotGet – Creates the statement to create custom snapshots for CheckDB or

CheckTable.

 Minion.CheckDBStatusMonitor – This procedure updates the status of running operations, in

Minion.CheckDBLogDetails.

 Minion.CheckDBThreadCreator – Internal use only.

Procedures Detail

Minion.CheckDB
This procedure runs a DBCC CheckDB operation for an individual database. Minion.CheckDB is the procedure

that creates and runs the actual DBCC CHECKDB statements for databases which meet the criteria stored in

the settings table (Minion.CheckDBSettingsDB).

IMPORTANT: We HIGHLY recommend using Minion.CheckDBMaster for all of your integrity check operations,

even when operating on a single database. Do not call Minion.CheckDB to perform integrity checks.

The Minion.CheckDBMaster procedure makes all the decisions on which databases to process, and what

order they should be in. It’s certainly possible to call Minion.CheckDB manually, to process an individual

database, but we instead recommend using the Minion.CheckDBMaster procedure (and just include the

single database using the @Include parameter). First, it unifies your code, and therefore minimizes your

effort. By calling the same procedure every time you reduce your learning curve and cut down on mistakes.

55

Second, future functionality may move to the Minion.CheckDBMaster procedure; if you get used to using

Minion.CheckDBMaster now, then things will always work as intended.

Name Type Description
@DBName nvarchar Database name.

@Op varchar Operation name.

Valid inputs:
CHECKDB
CHECKALLOC

@StmtOnly bit Only generate CheckDB statements, instead of
running them.

@ExecutionDateTime datetime The date and time of the batch operation; this is
passed in from the Minion.CheckDBMaster
procedure.

Leave this NULL when running this stored
procedure explicitly.

@Debug bit Enable logging of special data to the debug
tables.

For more information, see
“Minion.CheckDBDebug”,
“Minion.CheckDBDebugSnapshotCreate”, and
“Minion.CheckDBDebugSnapshotThreads”.

@Thread tinyint Internal use only.

Example execution:

-- Generate DBCC CHECKDB statements for database DB2, as applicable:
EXEC [Minion].[CheckDB]
 @DBName = 'DB2',
 @Op = 'AUTO',
 @StmtOnly = 1;

Example execution:

-- Generate DBCC CHECKALLOC statements for database DB1:
EXEC [Minion].[CheckDB]
 @DBName = 'DB1',
 @Op = 'CHECKALLOC',
 @StmtOnly = 1;

Minion.CheckDBCheckTable
This procedure runs DBCC CheckTable operations for one or more individual tables.

Minion.CheckDBCheckTable is the procedure that creates and runs the actual DBCC CHECKTABLE statements

56

for tables, as determined in the Minion.CheckDBMaster stored procedure, and the settings tables

(Minion.CheckDBSettingsDB and Minion.CheckDBSettingsTable).

IMPORTANT: We HIGHLY recommend using Minion.CheckDBMaster for all of your integrity check operations,

even when operating on a single table. Do not call Minion.CheckDBCheckTable to perform integrity checks.

The Minion.CheckDBMaster procedure makes all the decisions on which databases and tables to process, and

what order they should be in. It’s certainly possible to call Minion.CheckDBCheckTable manually, to process

an individual table, but we instead recommend using the Minion.CheckDBMaster procedure (and just include

the single table using the @Tables parameter). First, it unifies your code, and therefore minimizes your

effort. By calling the same procedure every time you reduce your learning curve and cut down on mistakes.

Second, future functionality may move to the Minion.CheckDBMaster procedure; if you get used to using

Minion.CheckDBMaster now, then things will always work as intended.

Name Type Description
@DBName nvarchar Database name.

@Schemas varchar Limits maintennce to just a single schema, or list
of schemas.

See the @Schema entry for
Minion.CheckDBMaster for more information.

@Tables varchar Limits maintennce to just a single table, or list of
tables.

@StmtOnly bit Only generate CheckDB statements, instead of
running them.

@PrepOnly bit Only determines which tables require
CheckTable at this time, and saves this
information to a table
(Minion.CheckDBCheckTableThreadQueue).

This feature is used automatically (and
internally) for use multi-threaded CheckTable
work.

Note: This can also be used by users. For
example, if you wanted to edit the
Minion.CheckDBCheckTableThreadQueue table
after the list off tables was added to it, but
before the actual CheckTable run.

@RunPrepped bit If you've run Minion.CheckDBCheckTable with
@PrepOnly=1 (and so the list of tables to be
checked is already in the Minion.
Minion.CheckDBCheckTableThreadQueue table),
then you can use this option to actually run
CheckTable operations.

57

This feature is used automatically (and
internally) for use multi-threaded CheckTable
work.

Note: This can also be used by users. See the
“Note” in the @PrepOnly entry above.

@ExecutionDateTime datetime Date and time the CheckTable took place.

If this stored procedure was called by
Minion.CheckDBMaster, @ExecutionDateTime
will be passed in here, so this operation is
included as part of the entire (multi-table or
multi-database) CheckTable operation.

@Thread tinyint For internal use only.
@Debug bit Enable logging of special data to the debug

tables.

For more information, see
“Minion.CheckDBDebug”,
“Minion.CheckDBDebugSnapshotCreate”, and
“Minion.CheckDBDebugSnapshotThreads”.

Example execution:

-- Generate DBCC CHECKTABLE statements for database DB2, as applicable:
EXEC [Minion].[CheckDBCheckTable]
 @DBName = 'DB2',
 @StmtOnly = 1;

Example execution:

-- Generate DBCC CHECKTABLE statements for database DB1:
EXEC [Minion].[CheckDBCheckTable]
 @DBName = 'DB1',
 @StmtOnly = 1;

Minion.CheckDBCheckTableThreadRunner
This procedure runs the CheckTable threads.

This procedure is for internal use only.

Minion.CheckDBMaster
The Minion.CheckDBMaster procedure is the central procedure of Minion CheckDB. It uses the parameter

and/or table data to make all the decisions on which databases to run CheckDB, and what order they should

be in. This stored procedure calls either the Minion.CheckDB stored procedure, or the

Minion.CheckDBCheckTable.

58

IMPORTANT: We HIGHLY recommend using Minion.CheckDBMaster for all of your integrity check operations,

even when operating on a single database. Do not call Minion.CheckDB to perform integrity checks.

In addition, Minion.CheckDBMaster performs extensive logging, runs configured pre- and postcode, enables

and disables the status monitor job (which updates log files for Live Insight, providing percent complete for

each CheckDB), and more.

In short, Minion.CheckDBMaster decides on, runs, or causes to run every feature in Minion CheckDB.

Name Type Description

@DBType varchar The type of database.

Valid inputs:
System
User

@OpName varchar Operation name. Default value is CHECKDB.

The AUTO option allows Minion CheckDB to
choose the appropriate operation per database,
based on settings in the
Minion.CheckDBSettingsAutoThresholds table.
For more information on this, see the section
titled “How to: Configure Minion CheckDB
Dynamic Thresholds”.

Using NULL allows the system to choose the
appropriate settings from the
Minion.CheckDBSettingsServer table.

Valid inputs:
CHECKDB
CHECKTABLE
CHECKALLOC
AUTO
NULL

@StmtOnly bit Only generate CheckDB statements, instead of
running them.

@ReadOnly tinyint Readonly option; this decides whether or not to
include ReadOnly databases in the operation, or
to perform operations on only ReadOnly
databases.

A value of 1 includes ReadOnly databases; 2
excludes ReadOnly databases; and 3 only
includes ReadOnly databases.

Valid values:
1
2

59

3
@Schemas varchar This allows you to limit the operations to just a

single schema, or list of schemas. Without
further filtering (using the Tables column), all
objects in this/these schemas will be targeted.

Note that this places no limit on the database.
For example: If you specify Schemas=’Minion’,
and you have a “Minion” schema in multiple
databases, MC will operate on the Minion
schema across any database that has it.

@Schemas = NULL will run maintenance on all
schemas.

@Schema will also accept a comma-delimited
list of database names and LIKE expressions
(e.g., ‘Minion, Test%, Bravo’).

@Tables varchar This allows you to limit the operations to just a
single table, or list of tables.

Note that this places no limit on the database.
For example: If you specify Tables=’Minion’, and
you have a “Minion” table in multiple databases,
MC will operate on the Minion table across any
database that has it.

@Tables = NULL will run maintenance on all
tables (unless otherwise filtered, e.g., by the
@Schemas parameter).

@Table will also accept a comma-delimited list
of database names and LIKE expressions (e.g.,
‘Minion, Test%, Bravo’).

@Include Varchar Use @Include to run CheckDB on a specific list of
databases, or databases that match a LIKE
expression. Alternately, set @Include=’All’ or
@Include=NULL to run maintenance on all
databases.

If, during the last backup run, there were
backups that failed, and you need to back them
up now, just call this procedure with @Include =
'Missing'. The stored procedure will search the
log for the backups that failed in the previous
batch (for a given BackupType and DBType), and
back them up now. Note that the BackupType
and DBType must match the errored out
backups.

60

Valid inputs:
NULL
Regex
Missing
<comma-separated list of DBs including wildcard
searches containing '%'>

@Exclude varchar Use @Exclude to skip backups for a specific list
of databases, or databases that match a LIKE
expression.

Examples of valid inputs include:
DBname
DBName1, DBname2, etc.
DBName%, YourDatabase, Archive%

@NumConcurrentProcesses tinyint The number of concurrent processes to use for
this operation.

This is the number of databases that will be
processed simultaneously (CheckDB or
CheckTable).

Default value is 3.

@DBInternalThreads tinyint If CheckTable, this is the number of tables that
will be processed in parallel.

@TestDateTime datetime A “what if” parameter that allows you to see
what schedule will be used at a certain date and
time. This returns the settings from
Minion.CheckDBSettingsServer that would be
used at that date and time, and a list of
databases (and their order) to be included in the
batch.

IMPORTANT: To ONLY run the test, and not the
actual operations, run with @StmtOnly = 1. For
example: EXEC Minion.CheckDBMaster
@StmtOnly = 1, @TestDateTime = '2016-09-28
18:00';

@TimeLimitInMins int The time limit to impose on this opertion, in

minutes.

@FailJobOnError bit Cause the job to fail if an error is encountered. If
an error is encountered, the rest of the batch
will complete before the job is marked failed.

@FailJobOnWarning bit Cause the job to fail if a warning is encountered.
If a warning is encountered, the rest of the batch
will complete before the job is marked failed.

@Debug bit Enable logging of special data to the debug
tables.

61

For more information, see
“Minion.CheckDBDebug” and
“Minion.CheckDBDebugLogDetails”.

Example execution:

-- Run database integrity check operations for all databases, allow 3 concurrent processes:
EXEC [Minion].[CheckDBMaster]
 @DBType = 'User',
 @OpName = 'AUTO',
 @StmtOnly = 0,
 @NumConcurrentProcesses = 3;

Example execution:

-- Run DBCC CHECKDB for all user databases named like Minion%, allow 2 concurrent processes:
EXEC [Minion].[CheckDBMaster]
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 0,
 @Include = 'Minion%',
 @NumConcurrentProcesses = 2;

Example execution:

-- Run DBCC CHECKDB for all user databases EXCEPT "TestRun" and those named like %Archive:
EXEC [Minion].[CheckDBMaster]
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 0,
 @Exclude = '%Archive, TestRun';

Example execution:

-- Generate database integrity statements for all system databases:
EXEC [Minion].[CheckDBMaster]
 @DBType = 'System',
 @OpName = 'AUTO',
 @StmtOnly = 1;

Minion.CheckDBRemoteRunner
This procedure creates the remote job for remote CHECKDB mode, and runs it.

This procedure is for internal use only.

62

Minion.CheckDBRotationLimiter
This procedure manages which databases and tables have already been run within the rotation period, and

makes sure that only the desired databases are run. It maintains a list of the databases or tables that have

run during the current rotation period.

This procedure is for internal use only.

For more information, see “About: Rotational Scheduling” and “How to: Configure Rotational Scheduling”.

Minion.CheckDBSnapshotDirCreate
This procedure is for internal use only.

Minion.CheckDBSnapshotGet
Creates the statement to create custom snapshots for CheckDB or CheckTable.

This procedure is meant for internal use.

Future solutions (or MinionWare support) may include instructions on how to use this procedure for

troubleshooting or custom scenarios.

Note: SQL Server 2016 and earlier versions only allow custom snapshots for Enterprise edition. SQL Server

2016 SP1 allow custom snapshots in any edition.

For more information, see “How to: Configure Custom Snapshots”.

Name Type Description
@DBName varchar Database name.

@OpName varchar Operation name.

Minion.CheckDBStatusMonitor
This procedure updates the status of running operations, in Minion.CheckDBLogDetails. It is automatically

started at the start of an integrity check operation, and automatically stopped at the end of the last

operation.

Name Type Description

@Interval varchar The amount of time to wait before updating the
table again.

Default is '00:00:05' (5 seconds).

Minion.CheckDBThreadCreator
This procedure is for internal use only.

Minion.CloneSettings
This procedure allows you to generate an insert statement for a table, based on a particular row in that table.

63

We made this procedure flexible: you can enter in the name of any Minion table, and a row ID, and it will

generate the insert statement for you.

Note that this function is shared between Minion modules.

WARNING: This generates a clone of an existing row as an INSERT statement. Before you run that insert, be

sure to change key identifying information - e.g., the DBName - before you run the INSERT statement; you

would not want to insert a completely identical row.

Name Type Description

@TableName Varchar The name of the table to generate an insert
statement for.

Note: This can be in the format
"Minion.CheckDBSettingsDB" or just "
CheckDBSettingsDB".

@ID Int The ID number of the row you'd like to clone.
See the discussion below.

@WithTrans Bit Include “BEGIN TRANSACTION” and
“ROLLBACK TRANSACTION” clauses around the
insert statement, for safety.

Discussion:

Because of the way we have writte Minion CheckDB, you may often need to insert a row that is nearly

identical to an existing row. If you want to change just one setting, you still have to fill out 40 columns. For

example, you may wish to insert a row to Minion.CheckDBSettingsDB that is only different from the

MinionDefault rows in two respects (e.g., DBName and GroupOrder).

We created Minion.CloneSettings to easily duplicate any existing row in any table. This "helper" procedure

lets you pass in the name off the table you would like to insert to, and the ID of the row you want to model

the new row off of. The procedure returns an insert statement so you can change the one or two values you

want.

Discussion: Identity columns

If the table in question has an IDENTITY column, regardless of that column’s name, Minion.CloneSettings will

be able to use it to select your chosen row. For example, let’s say that the IDENTITY column of Table1 is

ObjectID, and that you call Minion.CloneSettings with @ID = 2. The procedure will identify that column and

return an INSERT statement that contains the values from the row where ObjectID = 2.

Minion.DBMaintDBSettingsGet
Determines which settings from the Minion.CheckDBSettingsDB table apply for a given database and

operation, at a given time. This procedure is generally for internal use, but you can use it manually as needed.

Note that this function is shared between Minion modules.

64

Also: To determine the settings from the Minion.CheckDBSettingsServer table will be used, use the

Minion.CheckDBMaster procedure with @StmtOnly = 1, and @TestDateTime populated.

Name Type Description
@Module varchar The name of the Minion module.

Valid inputs include:
CHECKDB

@DBName varchar Database name.

@OpName varchar Operation name.

Valid inputs:
NULL
AUTO
CHECKDB
CHECKTABLE

@SettingID int An output parameter that provides the ID of the
row in Minion.CheckDBSettingsDB that applies
to the module, database, operation, and time
provided.

@TestDateTime datetime The date and time of the operation. Automatic
operations provide the present date and time to
get the applicable settings.

If you’re running Minion.DBMaintDBSettingsGet
by hand, you can pass in any date and time as a
“what if” to see what settings would be used at
that time.

Example execution:

DECLARE @SettingID INT;
EXEC Minion.DBMaintDBSettingsGet
 @Module = 'CHECKDB',
 @DBName = 'Demo',
 @OpName = 'CHECKDB',
 @SettingID = @SettingID OUTPUT,
 @TestDateTime = '2016-10-22 16:00:00';
SELECT @SettingID AS SettingID;

Minion.DBMaintDBSizeGet
Determines the size of the database passed in through @DBName, as determined by the ThresholdType and

ThresholdValue fields in the Minion.CheckDBSettingsAutoThresholds table.

Note that this function is shared between Minion modules.

65

Name Type Description
@Module varchar The name of the Minion module.

Valid inputs include:
CHECKDB

@OpName varchar An output parameter that provides the
operation name (e.g., CHECKDB).

@DBName varchar Database name.
@DBSize decimal An output parameter that provides the database

size, as measured in GB.

Minion.DBMaintServiceCheck
This procedure checks the SQL Agent run status and returns the result in an output parameter.

Note that this function is shared between Minion modules.

Name Type Description

@ServiceStatus bit Output column that returns the state of the SQL
Agent service: running (1), or not running (0).

Example:

DECLARE @ServiceStatus BIT;
EXEC Minion.DBMaintServiceCheck @ServiceStatus = @ServiceStatus OUTPUT
SELECT @ServiceStatus;

Minion.DBMaintStatusMonitorONOff
This procedure is used to turn the status monitor job on or off.

NOTE: This procedure is used internally; it is not meant to be called manually.

Note that this function is shared between Minion modules.

Functions Detail

Minion.DBMaintSQLInfoGet
This function returns a table with information about the current server instance: VersionRaw, Version,

Edition, OnlineEdition, Instance, InstanceName, and ServerAndInstance.

Note that this function is shared between Minion modules.

Example execution:

SELECT VersionRaw
 , Version
 , Edition

66

 , OnlineEdition
 , Instance
 , InstanceName
 , ServerAndInstance
FROM Minion.DBMaintSQLInfoGet();

Overview of Jobs
When you install Minion CheckDB, it creates two new jobs:

 MinionCheckDB-AUTO – Runs every hour. This job consults the Minion.CheckDBSettingsServer table

to determine what, if any, integrity check operations are slated to run at that time. By default, the

Minion.CheckDBSettingsServer table is configured with Saturday full CheckDBs, daily weekday

differential CheckDBs, and log CheckDBs every half hour.

 MinionCheckDBStatusMonitor – Monitor job that updates the log tables with “CheckDB percentage

complete” data. By default, this job runs continuously, updating every 10 seconds, while a Minion

CheckDB operation is running.

67

“About” Topics

About: Minion CheckDB Operations
A baseline run of Minion CheckDB operates like this:

1. “Master” SP: The job MinionCheckDB-AUTO runs and calls the Minion.CheckDBMaster procedure,

without parameters.

2. Schedule from SettingsServer: Minion.CheckDBMaster then consults the

Minion.CheckDBSettingsServer table to determine what operation is currently scheduled. Let’s say

this run of the job sees a “User CHECKDB” operation is in order.

3. Settings from SettingsDB and SettingsTable: The Master procedure then checks the table

Minion.CheckDBSettingsDB to work out which databases (if any) should be excluded from the run,

and what settings to apply. (Note that a CHECKTABLE operation consults both the

Minion.CheckDBSettingsDB table and Minion.CheckDBSettingsTable).

That’s a default, no-special-configurations run of Minion CheckDB. Other options configurable in the product

add additional steps, but these base steps remain the same.

Those other options include (but of course, may not be limited to):

 Dynamic thresholds, which let MC determine whether to run a CheckDB or a CheckTable (based on

your configured criteria). Related table: Minion.CheckDBSettingsAutoThresholds.

 Remote CheckDB, which allows you to configure CheckDB operations on remote servers. Related

table: Minion.CheckDBSettings.RemoteThresholds.

 CheckTable rotations (“rotational scheduling”), which allow you to define a rotation scenario for

your operations. Related table: Minion.CheckDBSettingsRotation.

 CheckDB rotations (“rotational scheduling”), which allow you to define a rotation scenario for your

operations. Related table: Minion.CheckDBSettingsRotation.

 Custom snapshots, which allow you to set the location (and, for CheckTable operations, the

snapshot frequency) of custom snapshots. Related table: Minion.CheckDBSettingsSnapshot and

Minion.CheckDBSnapshotPath.

 Inline Tokens, which allows you use defined patterns to create dynamic names. Related table:

Minion.DBMaintInlineTokens.

CHECKTABLE operations
In step 3 above, we noted that a CHECKTABLE operation consults both the Minion.CheckDBSettingsDB table

and Minion.CheckDBSettingsTable.

For CHECKTABLE operations, Minion CheckDB uses settings as appropriate from Minion.CheckDBSettingsDB

where OpName=’CHECKTABLE’. Then, if there are table-level settings in Minion.CheckDBSettingsTable, those

settings take precedence for those tables.

68

For example: In this example, we have the following settings in Minion.CheckDBSettingsDB:

ID DBName OpLevel OpName Exclude … IsActive
1 MinionDefault DB CHECKDB 0 … 1

2 MinionDefault DB CHECKTABLE 0 … 1
3 DB1 DB CHECKDB 0 … 1

4 DB1 DB CHECKTABLE 0 … 1

And the following settings in Minion.CheckDBSettingsTable:

ID DBName SchemaName TableName Exclude … IsActive

1 DB1 dbo MyTable 0 … 1
2 DB1 dbo OtherTable 1 … 1

3 DB2 dbo ASDF 0 … 1

With these settings in place:

 A CHECKDB run will use settings from Minion.CheckDBSettingsDB, either row 3 (for database DB1) or

row 1 (for any other database).

 A CHECKTABLE run for DB5 will use settings from Minion.CheckDBSettingsDB, row 2.

 A CHECKTABLE run for DB1 will use settings from Minion.CheckDBSettingsDB, row 3; EXCEPT for

tables “MyTable” and “OtherTable”.

 A CHECKTABLE run for DB2 will use settings from Minion.CheckDBSettingsDB, row 3; EXCEPT for

table “ASDF”.

Complex scenarios
It’s useful for you to know how different features of Minion CheckDB play together. In this section, we’ll look

at the logical ordering and interplay between features. This section will be expanded in future updates to the

documentation.

To demonstrate how it all fits together, let’s say you have a very complex scenario for DB1, with the following

settings configured:

 Weekly AUTO schedule

 Auto Threshold set at 100 GB

 Remote Threshold set at 50 GB

 Custom snapshot

 CheckTable rotation

 CheckDB rotation

Database is under the auto threshold and remote threshold: Right now, DB1 is 40GB. So, the logical order

of operations for this scenario is:

1. A run of the MC job determines that it’s time to run the AUTO schedule.

69

2. It checks the DB size, and finds it under the auto threshold of 100; so, it’s assigned a CheckDB

operation.

3. DB1 is also under the remote threshold, so the operation will be local.

4. DB1 is on an edition of SQL Server that supports custom snapshots, so the custom snapshot settings

apply.

5. MC figures out which databases to run next in the CheckDB rotation, and runs them. (Note that as

this is a CheckDB operation, CheckTable rotation isn’t in play.)

Database is under the auto threshold, but over the remote threshold: DB1 has grown to 65 GB. The logical

order of operations for this scenario is:

1. A run of the MC job determines that it’s time to run the AUTO schedule.

2. It checks the DB size, and finds it under the auto threshold of 100; so, it’s assigned a CheckDB

operation.

3. DB1 is OVER the remote threshold, so the operation will be remote.

4. The remote server supports custom snapshots, AND remote CheckDB is set to “Disconnected” mode,

AND custom snapshots are configured on the remote server. So the custom snapshot settings apply

there. (For more on Disconnected and Connected modes, see the discussion below,

“Minion.CheckDBSettingsDB”, “About: Remote CheckDB”, and “How to: Set up CheckDB on a

Remote Server”.)

5. MC continues with the next database in the CheckDB rotation, and runs it using the same decision

making process. (Note that as this is a CheckDB operation, CheckTable rotation isn’t in play.)

Database is over both the auto threshold and the remote threshold: DB1 has grown to 110 GB. The logical

order of operations for this scenario is:

1. A run of the MC job determines that it’s time to run the AUTO schedule.

2. It checks the DB size, and finds it OVER the auto threshold of 100; so, it’s assigned a CheckTable

operation. (CheckTable operations are not eligible for remote integrity checks.)

3. The local server supports custom snapshots, AND custom snapshots are configured on the server for

CheckTable operations. So the custom snapshot settings apply here.

4. MC determines which tables to run next in the CheckTable rotation, and runs them.

5. When DB1 is completed, MC continues with the next database in the rotation (whether that’s the

next database in the CheckTable rotation, or the next database which might have either CheckDB or

CheckTable), and runs it using the same decision making process.

Again, this example isn’t a recommendation, but simply a demonstration of how different features of MC

work around one other.

Discussion: Disconnected mode. In the second scenario above, remote CheckDB was set to Disconnected

mode, and so the remote server’s custom snapshot settings came into play. Connected mode, however, just

runs the DBCC CheckDB commands generated from the local server, on the remote server. Connected mode

does not consult the custom snapshot settings at all; by default, it will use an internal snapshot. However,

70

you could force a “custom snapshot” in connected mode, by (1) restoring the database in question to the

remote server (outside of the MC process; you’d have to use RemoteRestoreMode=NONE), (2) creating your

own custom snapshot (outside of the MC process), and (3) pointing the PreferredDBName at that snapshot.

And because PreferredDBName accepts inline tokens and LIKE expressions, you could potentially

About: Feature Compatibility
Most Minion CheckDB features apply to both DBCC CheckDB operations and DBCC CheckTable operations,

but there are exceptions:

 CheckDB Operations CheckTable Operations
Dynamic Thresholds YES YES

Remote CheckDB YES No

Dynamic Remote CheckDB YES No
Custom Snapshots YES YES

Custom Dynamic Snapshots No YES
Multithreading operations YES YES

Rotational Scheduling YES YES

Additionally, some features are cross-compabitble with one another, and some are not, and quite a lot of

them have footnotes:

 Dynamic
Thresholds

Remote
CheckDB

Dynamic
Remote
CheckDB

Custom
Snapshots

Custom
Dynamic
Snapshots

Multithreading
operations

Rotational
Scheduling

Dynamic
Thresholds

- Yes1 Yes Yes Yes2 Yes Yes

Remote
CheckDB

Yes1 - No3 Yes4 No Yes Yes

Dynamic
Remote
CheckDB

Yes No3 - Yes4,5 No Yes Yes

Custom
Snapshots

Yes Yes4 Yes4,5 - Yes Yes Yes

Custom
Dynamic
Snapshots

Yes2 No No Yes - No Yes

Multithreading
operations

Yes Yes Yes Yes No - Yes

Rotational
Scheduling

Yes Yes Yes Yes Yes Yes -

1Dynamic Thresholds decides whether to do a CheckDB or a CheckTable, based on thresholds you configure.

Remote CheckDB cannot perform a CheckTable operation. So technically speaking, you can set both of these

options up, and if MC chooses CheckTable, it won’t consult the remote CheckDB settings; it will simply do a

local CheckTable.

71

2Dynamic Thresholds decides whether to do a CheckDB or a CheckTable, based on thresholds you configure.

Custom Dynamic Snapshots are not available for CheckDB. So, if MC chooses CheckDB, it won’t consult the

dynamic snapshot; it will simply use an internal snapshot.

3To enable dynamic remote snapshots, “remote snapshots” (IsRemote) must be disabled. For more

information, see “Minion.CheckDBSettingsDB”.

4For more information, see “Discussion: Disconnected mode” in the “About: Minion CheckDB Operations”

section.

5If MC decides to perform a local operation, then the custom snapshot settings are back in play.

About: Scheduling
Minion CheckDB offers you a choice of scheduling options:

 You can use the Minion.CheckDBSettingsServer table to configure flexible scheduling scenarios;

 Or, you can use the traditional approach of one job per integrity check schedule;

 Or, you can use a hybrid approach that employs a bit of both options.

For more information, see “Changing Schedules” in the Quick Start section, and “How To: Change Schedules”.

Table based scheduling
When Minion CheckDB is installed, it uses a single job (MinionCheckDB-AUTO) to run the stored procedure

Minion.CheckDBMaster with no parameters, once every hour.

When the Minion.CheckDBMaster procedure runs without parameters, it uses the

Minion.CheckDBSettingsServer table to determine its runtime parameters (including the schedule of jobs per

database type). This is how MC operates by default, to allow for the most flexible scheduling with as few jobs

as possible.

Table based scheduling presents multiple advantages:

 A single job – Multiple jobs are, to put it simply, a pain. They’re a pain to update and slow to

manage, as compared with using update and insert statements on a table.

 Fast, repeatable configuration – Keeping your schedules in a table saves loads of time, because

you can enable and disable schedules, change frequency and time range, etc. all with an update

statements. This also makes standardization easier: write one script to alter your schedules, and

run it across all Minion CheckDB instances (instead of changing dozens or hundreds of jobs).

 Mass updates across instances – With a simple PowerShell script, you can take that same script

and run it across hundreds of SQL Server instances, standardizing your entire enterprise all at

once.

 Transparent scheduling – Multiple jobs tend to obscure the maintenance scenario, because each

piece of the configuration is displayed in separate windows. Table based scheduling allows you

to see all aspects of the schedule in one place, easily and clearly.

72

 Boundless flexibility – Table based scheduling provides an amazing degree of flexibility that

would be very troublesome to implement with multiple jobs. With one job, you can schedule all

of the following:

o System DBCC CheckDBs three days a week.

o User DBCC CheckDBs on weekend days and Wednesday.

o User DBCC CheckTables twice daily for specific schemas.

o …and each of these can also use Dynamic Thresholds, which can also be slated for

different sizes, applicable at different times and days of the week and year.

Parameter Based Scheduling
Other SQL Server native integrity check solutions traditionally use one job per schedule. Typically and at a

minimum, that means one job for system database CheckDBs, and another job for user database CheckDBs.

Note: Whether you use table based or parameter based scheduling, we highly recommend always using the

Minion.CheckDBMaster stored procedure to run integrity check operations. While it is possible to use the

Minion.CheckDB procedure or Minion.CheckDBCheckTable to execute integrity checks, doing so will bypass

much of the configuration and logging benefits that Minion CheckDB was designed to provide.

Discussion: Hierarchy and Precedence
There is an order of precedence to the schedule settings in Minion.CheckDBSettingsServer, from least

frequent (First/LastOfYear) to most frequent (daily); the least frequent setting, when it applies, takes

precedence over all others. For example, if today is the first of the year, and there is a FirstOfYear setting,

that’s the one it runs.

The full list, from most frequent, to least frequent (and therefore of highest precedence), is:

1. Daily

2. Weekday / Weekend

3. Monday / Tuesday / Wednesday / Thursday / Friday / Saturday / Sunday

4. FirstOfMonth / LastOfMonth

5. FirstOfYear / LastOfYear

Note that the least frequent “Day” settings – FirstOfYear, LastOfYear, FirstOfMonth, LastOfMonth – only

apply to user databases, not to system databases. System databases may have “Day” set to a day of the week

(e.g., Tuesday), WeekDay, WeekEnd, Daily, or NULL (which is equivalent to “Daily”).

Discussion: Overlapping Schedules, and MaxForTimeframe
The Minion.CheckDBSettingsServer table allows you to have integrity check schedule settings that overlap.

Note: We recommend against overlapping schedules, as there is no guarantee of precedence. If you have a

day and time window scheduled for DB1 CheckDB, for example, and an overlapping window for DB1

CheckTable, there is no set precedence for which one will run.

73

Use adjacent day and time windows for individual databases or sets of databases. For example, we could

perform DBCC CheckTable operations on specific DB1 tables every 6 hours from 1am to 7pm, and then run a

full DBCC CheckDB every night at 11pm. For this scenario, we would:

 Insert 1 row for the DB1 CheckTable, with a MaxForTimeframe value of 4 and FrequencyMins = 360

(6 hours). Set BeginTime = 01:00:00, and EndTime = 19:00:00.

 Insert one row for the DB1 CheckDB, with a MaxForTimeframe value of 1. Set BeginTime = 23:00:00,

and EndTime = 23:59:00.

The sequence of job executions then goes like this:

1. The MinionCheckDB-AUTO job kicks off at 1:00 am.

2. MC determines that a CheckTable operation is slated for DB1 tables, and executes the CheckTable

operation.

3. MC also increments the CheckTable row’s CurrentNumCheckDBs for that timeframe.

4. The MinionCheckDB-AUTO job continues to run hourly until 7am, when MC sees that it’s time for

another CheckTable run (based on the MaxForTimeframe field).

5. Steps 2-4 repeat, CheckTable running again at 1pm and 7pm.

6. At 11pm, MC sees that the CheckDB is due, runs it, and increments the CheckDB row’s

CurrentNumCheckDBs.

Discussion: Using FrequencyMins
The FrequencyMins column allows you to run the “MinionCheckDB-AUTO” SQL Agent job as often as you like,

but to space operations out by a set interval. Let’s say that the job runs every hour, but DBCC CheckDB

(PHYSICAL_ONLY) for DB1 should only run every 12 hours. Just set FrequencyMins = 720 for the

CheckDB/DB1 row.

About: Dynamic Thresholds
Minion CheckDB allows you to automate whether databases get a DBCC CheckDB operation, or a DBCC

CheckTable operation. Configure dynamic thresholds in the Minion.CheckDBSettingsAutoThresholds table.

These settings only apply to runs of the stored procedure Minion.CheckDBMaster where OpName = ‘Auto’ in

Minion.CheckDBSettingsDB (or, for a manual run, where @OpName = ‘Auto’).

The default entry that comes installed with Minion CheckDB sets a threshold by size, at 100 GB. What this

means is that by default – for Minion.CheckDBMaster runs with @OpName = ‘Auto’, any database under 100

GB gets a CheckDB operation instead of a CheckTable operation.

Note: As outlined in the “Configuration Settings Hierarchy” section, more specific settings in a table take

precedence over less specific settings. So if you insert a database-specific row for DB1 to this table, that row

will be used for DB1 (instead of the “MinionDefault” row).

For more information, see “How to: Configure Dynamic Thresholds”.

74

About: Remote CheckDB
Minion CheckDB provides remote integrity checks, where a database may be restored to another instance for

DBCC CheckDB operations.

Note: Remote operations only apply to DBCC CheckDB operations. Minion CheckDB does not support

remote CheckTable. For more information, see “About: Feature Compatibility”.

Requirements
IMPORTANT: Remote CheckDB has a few requirements:

 The source server’s SQL Agent service account must have rights on the remote server, including

permissions to create jobs. And of course, the two servers must be able to “see” each other.

 You must either be using Minion Backup 1.3 on the source server; or there must be an external

process that restores the database(s) in question to the remote server for CheckDB operations

(RemoteRestoreMode=NONE). This also means that the remote server must be a compatible

version of SQL Server, that the database can restore to.

 The remote server must have Minion CheckDB installed in the same database as the local

(“source”) server. So, if MC is installed in master on the source server, the remote server must have

MC installed in master, too. (Officially speaking, for Connected mode, you only need the

Minion.CheckDBResult table.)

 Remote CheckDB currently only supports Windows authentication.

For full instructions on configuring remote CheckDB, see “How to: Set up CheckDB on a Remote Server”.

Remote CheckDB modes: Connected vs Disconnected
Remote CheckDB has the option of Connected mode or Disconnected mode:

Connected mode is equivalent to running DBCC CheckDB commands from SQL Server Management Studio on

Svr1, against Svr2. Connected mode maintains the connection throughout the operation(s). It does not

require a full Minion CheckDB installation on the remote server. Connected mode is good for when you don’t

have permissions from the remote server back to the primary server. Connected mode has fewer moving

parts internally than Disconnected mode.

Disconnected mode requires a full Minion CheckDB installation on the remote server. Disconnected mode

requires the most permissions, but is also the more robust option; it has higher tolerance for things like

network fluctuations.

Remote Restore Modes
As you will see in the “How to: Set up CheckDB on a Remote Server” section, remote CheckDB is configured in

the Minion.CheckDBSettingsDB table. The RemoteRestoreMode field has three options:

NONE – MC performs no database restore to the remote server. If you already have a process in place for

restoring databases to a remote server – whether it’s a third party backup and restore proess, home grown,

75

detatch/attach, or anything else – “NONE” allows MC to fold into the existing scenario easily. Note that with

the benefit of Inline Tokens, the remote database could be named the same as the source database, or the

name could be generated in some rolling process with (for example) the date or a number, like

DB1.20170101. In that case, we can set PreferredDBName = ‘%DBName%.%Date%’, or the less specific

‘%DBName%.%’. When in doubt, Minion CheckDB will select the most recently created database that fits

the naming scheme.

LastMinionBackup – Restores the last backup from Minion Backup to the remote server, then runs CheckDB

against it.

NewMinionBackup – Takes a new backup using Minion Backup, restores it to the remote server, then runs

CheckDB against it.

Dynamic Remote CheckDB
You can also define thresholds for remote CheckDB, so the operation will run remotely only if it is above that

threshold.

To turn on this feature, the Minion.CheckDBSettingsDB column IsRemote must be set to 0. While this may

seem counterintuitive, IsRemote = 1 turns on remote CheckDB for all databases (that the given row applies

to). If you wish to handle remote operations dynamically, based on database size, set IsRemote = 0 –

meaning, “I want operations to be local unless a database crosses the threshold”.

For full instructions on configuring remote CheckDB, see “How to: Set up CheckDB on a Remote Server”.

About: Custom Snapshots
When you run DBCC CheckDB or DBCC CheckTable, behind the scenes, SQL Server creates a snapshot of the

database to run the operation against. If your version of SQL Server supports it, you can also choose to create

a custom snapshot and configure where its files are created.

Note: SQL Server 2016 and earlier versions only allow custom snapshots for Enterprise edition. SQL Server

2016 SP1 allow custom snapshots in any edition.

You might want to create a custom snapshot if an operation takes long enough that the internal snapshot

would grow too large (and risk filling up the drive), which would stop the operation. You can also – for

CheckTable operations only – create and recreate “Custom Dynamic Snapshots” (see the following section) at

timed intervals, to prevent the snapshot file from getting too large.

Minion CheckDB provides several options for custom snapshots:

 Assign a different drive for each file, or put them all onto a single drive.

 Change the location for just one file.

 Delete the snapshot after your operation is done, or keep it to fold it into your normal snapshot

rotation.

76

Note: If CustomSnapshot is enabled and your version of SQL Server doesn’t support it, that integrity check

operation will complete using the default internal snapshot. For more information, see the “Custom

snapshots fail” section under Troubleshooting.

IMPORTANT: SQL Server does not allow you to specify log files or filestream files in a CREATE SNAPSHOT

statement. The MSDN article “FILESTREAM Compatibility with Other SQL Server Features”

(https://msdn.microsoft.com/en-us/library/bb895334.aspx#DatabaseSnapshot) provides more information:

“When you are using FILESTREAM, you can create database snapshots of standard (non-FILESTREAM)

filegroups. The FILESTREAM filegroups are marked as offline for those database snapshots.”

For more information, see:

 the section “About: Custom Snapshots”

 the video “Custom Snapshot Basics”: https://youtu.be/0PVFXm6KDr0

 the video “Custom Snapshot for CheckTable”: https://youtu.be/1wda8fYBVk4

 the video “Custom Snapshot for Multiple Files”: https://youtu.be/Le43dzFBOVM

Custom Dynamic Snapshots
Custom snapshots allow you to determine where the snapshot file(s) will be located. For CheckTable, custom

snapshots allow you both to set the file locations, and to drop and recreate the snapshot every few minutes

(which we call “custom dynamic snapshots”).

IMPORTANT: Custom dynamic snapshots for CheckTable are only available for single-threaded operations.

This means that you must set DBInternalThreads in Minion.CheckDBSettingsDB, and DBInternalThreads in

Minion.CheckDBSettingsServer, to 1 for custom dynamic snapshots.

Note: The only difference between custom snapshots for CheckTable, and “rotating” custom dynamic

snapshots for CheckTable – those that drop and recreate every few minutes – is that a rotating snapshot has

“SnapshotRetMins” set to a value greater than zero.

Important notes:

 Minion.CheckDBSettingsSnapshot (DeleteFinalSnapshot): It’s a good idea to delete the snapshot

after your operation is done, but it’s not necessary. You might want to fold it into your normal

snapshot rotation.

 Minion.CheckDBSettingsSnapshot (SnapshotRetMins): You can set up dynamic snapshots that are

dropped and recreated every N minutes, for CheckTable oeprations. (The SnapshotRetMins column

does not apply to CheckDB operations, as you can only drop and recreate the snapshot for

CheckTable.)

 Hierarchy rules: The same rules apply in both Minion.CheckDBSettingsSnapshot and

Minion.CheckDBSnapshotPath for database overrides: Make sure you have one row for CheckDB

and one for CheckTable for MinionDefault, and CheckDB/CheckTable rows for each individual

database you configure in these tables.

https://msdn.microsoft.com/en-us/library/bb895334.aspx#DatabaseSnapshot
https://youtu.be/0PVFXm6KDr0
https://youtu.be/1wda8fYBVk4
https://youtu.be/Le43dzFBOVM

77

 Logging: The Minion.CheckDBSnapshotLog table shows you all the files and the statement used to

create the snapshot. This is mostly for troubleshooting, but it also has a column that shows you the

maximum size that each of the files reached. This is for planning; you can make sure that any given

disk will have enough space. You’re welcome.

Notes for troubleshooting:

 This table is where we store the “create database” snapshot command for custom snapshots.

 You can read from this table to make sure the files are being created, that they’re being created in

the right location, and with the correct name, and so on.

 One of the last columns in this table is the MaxSizeInMB column, which shows you the size of the

snapshot. That can help you plan the size of the drives you need to put the snapshots on.

Note: If you run a CheckDB operation from SvrA remotely (in disconnected mode) on SvrB, and if SvrB has

custom snapshots configured, then this table will hold records of the custom snapshot file(s) in this table on

SvrB. For more information, see “About: Remote CheckDB”, “How to: Set up CheckDB on a Remote Server”,

and the “Complex Scenarios” section under “About: Minion CheckDB Operations”.

About: Inline Tokens
Minion CheckDB 1.0 and MinionBackup 1.3 introduce a new feature to the Minion suite – Inline Tokens.

Inline Tokens allow you use defined patterns to create dynamic names and paths. For example, MC comes

with the predefined Inline Token “Server” and “DBName”.

In this version of MC, inline tokens are accepted for remote CheckDB operations. Specifically, the

PreferredDBName and RemoteJobName in the Minion.CheckDBSettingsDB table:

UPDATE Minion.CheckDBSettingsDB
SET PreferredDBName = '%Server%_%DBName%',

RemoteJobName = 'MinionCheckDB_%Server%_%DBName%';

From then on, the preferred database name on server “RemoteServer” for database “DB1” will be created as

“RemoteServer_DB1”, and the job created will be named “MinionCheckDB_RemoteServer_DB1”.

MC recognizes %Server% and %DBName% as Inline Tokens, and refers to the Minion.DBMaintInlineTokens

table for the definition.

Note: PreferredDBName accepts LIKE expressions, in addition to inline tokens. So you could set

PreferredDBName to %DBName%%, and (for example) for the DB1 database, it would work out to

PreferredDBName = ‘DB1%’. If there is more than one database that matches that pattern, MC will choose

the database with the most recent create date.

Create and use a custom Inline Token
To create a custom token, insert a new row to the Minion.DBMaintInlineTokens table. Guidelines:

78

 DynamicName: Use a unique DynamicName.

 ParseMethod: Custom inline tokens can't use internal variables (such as @ExecutionDateTime) like

the built-in tokens can. Custom tokens can only use SQL functions and @@variables.

 IsCustom: Mark IsCustom = 1.

 Definition: Provide a descriptive definition, for the use of you and your DBA team.

For example, we can use the following statement to create an Inline Token to represent the full day name

(like Monday, etc.):

INSERT INTO Minion.DBMaintInlineTokens
 (DynamicName
 , ParseMethod
 , IsCustom
 , Definition
 , IsActive
)
VALUES ('DayNameFull'
 , 'DATENAME(dw, GetDate())'
 , 1
 , 'Returns the full name of the current day (e.g. Monday, Tuesday, etc.).'
 , 1
);

IMPORTANT: The syntax for using this custom Inline Token is “|DayNameFull|”. Notice that default tokens

(like Server) use percent signs (“%Server%”), while custom tokens use pipe delimiters (“|DayNameFull|”).

You can now use this custom token in fields that accept them. See the following section for more

information.

Fields that accept Inline Tokens
You can use Inline Tokens in specific fields, in specific tables.

In Minion CheckDB, the table Minion.CheckDBSettingsDB:

 PreferredDBName

 RemoteJobName

In Minion Backup, fields in the tables Minion.BackupSettingsPath and Minion.BackupRestoreSettingsPath.

Custom Inline Tokens
We do have a few guidelines for creating your own tokens:

 Naming DynamicName: We recommend you do not include any special symbols – only alphanumeric

characters. We also recommend against using the underscore symbol.

79

 Defining ParseMethod: Custom inline tokens can't use internal variables (such as

@ExecutionDateTime) like the built-in tokens can. Custom tokens can only use SQL functions and

@@variables.

 Uniqueness: Be aware that there is a unique constraint on DynamicName and IsActive; so you can

only have one active “Date”, and one inactive “Date” (as an example).

 IsCustom: Set IsCustom = 1 for your custom dynamic names.

IMPORTANT: Custom inline tokens must be surrounded by pipes, not percent signs.

Inline Token Internals
The shorthand for this section looks like this: Tokens in settings tables -> MC stored procedures ->

Minion.DBMaintInlineTokensParse stored procedure -> Minion.DBMaintInlineTokens table.

In Minion Backup, multiple tables have fields that accept Inline Tokens; in Minion CheckDB 1.0, only the table

Minion.CheckDB does. As a part of normal (or manual) CheckDB operations, the Minion.CheckDB stored

procedure must access these fields and have the tokens translated.

This procedure in turn uses the stored procedure Minion.DBMaintInlineTokensParse to parse the token into

its value. The DBMaintInlineTokensParse, of course, gets the token definition from the table

Minion.DBMaintInlineTokens.

About: Multithreading operations
Minion CheckDB allows you to run multiple DBCC CheckDB processes, or multiple DBCC CheckTable

processes, at the same time.

 To configure database multithreading, set the NumConcurrentOps value greater than one in

Minion.CheckDBSettingsServer. This applies to both DBCC CheckDB and DBCC CheckTable

operations.

 To configure table multithreading, set the DBInternalThreads value greater than one in

Minion.CheckDBSettingsServer (or in Minion.CheckDBSettingsDB). Note: If you specify

DBInternalThreads in Minion.CheckDBSettingsServer, that value takes precedence over the

DBInternalThreads setting in Minion.CheckDBSettingsDB.

Warning: You can max out server resources very quickly if you use too many concurrent operations. If for

example you’re running 5 databases simultaneously, and each of those operations runs 10 tables

simultaneously, that can add up very quickly!

IMPORTANT: Custom dynamic snapshots for CheckTable are only available for single-threaded operations.

This means that you must set DBInternalThreads in Minion.CheckDBSettingsDB, and DBInternalThreads in

Minion.CheckDBSettingsServer, to 1 for custom dynamic snapshots. For more information, see the Custom

Dynamic Snapshots section in “About: Custom Snapshots”; and, see “About: Feature Compatibility”.

Multithreading information is logged in Minion.CheckDBLogDetails. In a multithreaded run, the

ProcessingThread column records number of the thread assigned to this operation. You can use this to

80

query with GROUP BY to see the distribution of threads (e.g., did one thread handle most of the work, or was

there a reasonably good distribution of work?)

On DisableDOP and “parallel checking”

In SQL Server Enterprise, by default a DBCC CheckDB operation runs with multiple parallel threads under the

covers. If you set DisableDOP=1, you force it to use a single thread, instead of multiple threads. In Minion

CheckDB, we have a completely separate (but compatible) concept called database multithreading; this is

where we spawn two or more DBCC CheckDB operations to run simultaneously.

 DisableDOP = 0 DisableDOP = 1
Database Multithreading on Multiple DBs process

simultaneously; each may have
multiple parallel threads.

Multiple DBs process
simultaneously; each may have only
one thread.

Database Multithreading off Each DB is processed serially; each
may have multiple parallel threads.

Each DB is processed serially; each
may have only one thread.

Checking Objects in Parallel – from https://msdn.microsoft.com/en-us/library/ms176064.aspx

“By default, DBCC CHECKDB performs parallel checking of objects. The degree of parallelism is

automatically determined by the query processor. The maximum degree of parallelism is configured

just like parallel queries. To restrict the maximum number of processors available for DBCC checking,

use sp_configure. For more information, see Configure the max degree of parallelism Server

Configuration Option. Parallel checking can be disabled by using trace flag 2528. For more

information, see Trace Flags (Transact-SQL).”

About: Rotational Scheduling
Minion CheckDB allows you to define a rotation scenario for your operations. For example, a nightly round of

10 databases would perform integrity checks on 10 databases the first night, another 10 databases the

second night, and so on. You can choose to set up a CheckDB rotation for databases, CheckTable rotation for

tables, or a combination of both.

You can also use the rotational scheduling to limit operations by time; for example, you could configure MC

to cycle through DBCC CheckDB operations for 90 minutes each night.

The table Minion.CheckDBSettingsRotation holds the rotation scenario for your operations (e.g., “run

CheckDB on 10 databases every night; the next night, process the next 10; and so on”). This table applies to

both CheckDB and CheckTable operations.

For more information, see “How to: Configure Rotational Scheduling”.

Example 1: DBCount rotation
Let’s say we enable one of the default settings in Minion.CheckDBSettingsRotation, so we have a rotational
schedule of 10 databases per run:

https://msdn.microsoft.com/en-us/library/ms176064.aspx

81

DBName OpName RotationLimiter RotationLimiterMetric RotationMetricValue
MinionDefault CHECKDB DBCount count 10

Note that not all columns are shown here.

If our Minion CheckDB schedule is set to run CheckDB nightly, and we have 13 databases (DB1 through

DB13), then:

 The first night would perform CheckDB on 10 databases: DB1 through DB10.

 The second night would include DB11, DB12, DB13, and DB1 through DB7.

 The third night would include DB8 through DB13, and DB1 through DB4.

 And, so on.

Example 2: Time rotation
DBName OpName RotationLimiter RotationLimiterMetric RotationMetricValue
MinionDefault CHECKDB Time Mins 60

Note that not all columns are shown here.

If our Minion CheckDB schedule is set to run CheckDB nightly, and we have 13 databases (DB1 through

DB13), then it might go like this:

 The first night, MC estimates that it can perform CheckDB on 4 databases in 60 minutes: DB1

through DB4.

 The second night, MC estimates that it can process the next 5 databases in 60 minutes: DB5 through

DB9.

 The third night, MC estimates it can process 3 databases: DB10 through DB12.

 The fourth night, MC estimates it can process 5 databases: DB13 and DB1 through DB4.

 And, so on.

Rotational Scheduling Internals
The procedure Minion.CheckDBRotationLimiter (internal use only) sets up the list of objects that should run

in the current batch. Here’s how:

1. What’s been processed: The SP pulls the list of objects that ran in the last batch from the

Minion.CheckDBLogDetails table, and inserts that list to the Minion.CheckDBRotationDBs table.

Now, the procedure knows which objects have been processed.
2. Keep the latest run: The SP then deletes all but the latest ExecutionDateTime for each object from

the Minion.CheckDBRotationDBs table. It only keeps the latest run because it's tracking the last time

an object was processed.

3. Remove processed objects: After that, the stored procedure deletes any objects from the work table

Minion.CheckDBThreadQueue that exist in the Minion.CheckDBRotationDBs table. This means that

objects which have already been processed for this period won't be included in the current run.

82

4. Limit the list: Finally, it deletes any objects from Minion.CheckDBThreadQueue that are over the

metric value. For example, if you're only going to run 10 databases per run, this will only keep the

first 10 databases in the list.

83

“How To” Topics

How To: View the results of an operation
The whole point of CheckDB and CheckTable operations is to determine whether there is any corruption. So

of course, Minion CheckDB records the results of these operations, in the tables Minion.CheckDBResult and

Minion.CheckDBCheckTableResult.

An easier way to determine if there were any errors, though, is to check the Status column in

Minion.CheckDBLogDetails:

 Complete - operation completed without errors.

 Complete (N <opname> Errors found) - the integrity check operation completed with errors. Check

the Consistency and AllocationErrors columns, and the Minion.CheckDBResults, table for full details.

 Complete with Warnings - operation completed, but there was an error with the process

somewhere along the way. This is usually seen on remote CheckDB operations when the process has

a problem getting the results back to the primary server. There are other circumstances that can

complete with warning. There could be problems deleting the snapshot, or something else. The

point is that the integrity check finished, but something else failed and it's impossible to say

what the state of the error reporting will be.

 Complete with Errors and Warnings - a combination of the above two.

 Complete with No Status - This means the integrity check operation completed, but we specifically

couldn't parse the error results. Again, this usually happens on remote runs when we can't figure

out how many allocation or consistency errors there are, but it could happen on a local run if

Microsoft sneaks in a new column into the result table. To get a “Complete” status, we rely on being

able to parse the output; so when you get this message, it usually means that you don't have that

return data from CheckDB/CheckTable/etc.

 Fatal error: <error message> - There was an error in the Minion CheckDB process itself, or

CheckDB/CheckTable itself was unable to run on a database.

How To: Configure settings for a single database
Default settings for the whole system are stored in the Minion.CheckDBSettingsDB table (in the two rows

marked DBName=MinionDefault). To specify settings that override those defaults for a specific database,

insert two rows for that database to the Minion.CheckDBSettingsDB table – one row for CHECKDB, and one

row for CHECKTABLE.

For example, we want to fine tune settings for DB1, so we use the following statement to insert two rows for

DB1:

INSERT INTO Minion.CheckDBSettingsDB
 (DBName,
 OpLevel,

84

 OpName,
 Exclude,
 RepairOption,
 RepairOptionAgree,
 AllErrorMsgs,
 IncludeRemoteInTimeLimit,
 ResultMode,
 HistRetDays,
 DBInternalThreads,
 DefaultTimeEstimateMins,
 BeginTime,
 EndTime,
 DayOfWeek,
 IsActive,
 Comment)
VALUES ('DB1' -- DBName
 , 'DB' -- OpLevel
 , 'CHECKDB' -- OpName
 , 0 -- Exclude
 , 'NONE' -- RepairOption
 , 1 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 1 -- IncludeRemoteInTimeLimit
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 1 -- DBInternalThreads
 , 1 -- DefaultTimeEstimateMins
 , '0:00:00' -- BeginTime
 , '23:59:00' -- EndTime
 , 'Daily' -- DayOfWeek
 , 1 -- IsActive
 , 'DB1 CheckDB' -- Comment
),
 ('DB1' -- DBName
 , 'DB' -- OpLevel
 , 'CHECKTABLE' -- OpName
 , 0 -- Exclude
 , 'NONE' -- RepairOption
 , 1 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 1 -- IncludeRemoteInTimeLimit
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 1 -- DBInternalThreads
 , 1 -- DefaultTimeEstimateMins
 , '0:00:00' -- BeginTime
 , '23:59:00' -- EndTime
 , 'Daily' -- DayOfWeek
 , 1 -- IsActive
 , 'DB1 CheckTable' -- Comment

85

);

Minion CheckDB comes with a utility stored procedure, named Minion.CloneSettings, for easily creating

insert statements like the example above. For more information, see the “Minion.CloneSettings” section.

IMPORTANT: If you enter database-specific rows, those rows completely override the settings for that

particular database. For example, the rows inserted above will be the source of all settings – even if a setting

is NULL – for all DB1 integrity check operations. For more information, see the “Configuration Settings

Hierarchy” section in “Architecture Overview”.

Follow the Configuration Settings Hierarchy Rule: If you provide a database-specific row, be sure that both

integrity check operations are represented in the table for that database. For example, if you insert a row

for DBName=’DB1’, OpName=’CHECKDB’, then also insert a row for DBName=’DB1’, OpName=’CHECKTABLE’.

Once you configure the settings context at the database level, the context stays at the database level (and

does not return to the default ‘MinionDefault’ level for that database).

How To: Configure settings for all databases
When you first install an instance of Minion CheckDB, default settings for the whole system are stored in the

Minion.CheckDBSettingsDB table rows where DBName=’MinionDefault’. To change settings for all databases

on the server, update the values for either or both of the two default rows.

For example, you might want to change the result mode from Full to Summary for CheckDB operations:

UPDATE Minion.CheckDBSettingsDB
SET ResultMode='Summary'
WHERE DBName = 'MinionDefault'
 AND OpName = 'CHECKDB';

Over time, you may have entered one or more database-specific rows for individual databases. In this case,

the settings in the default “MinionDefault” rows do not apply to those databases types. You can of course

update the entire table – both the default rows, and any database-specific rows – with new settings, to be

sure that the change is universal for that instance. So for example, if you want the history retention days to

be 90 (instead of the default, 60 days), run the following:

UPDATE Minion.CheckDBSettingsDB
SET HistRetDays = 90;

How To: Process databases in a specific order
You can choose the order in which databases will be processed. For example, let’s say that you want Minion

CheckDB to check databases in this order:

1. [YourDatabase] (it’s the most important database on your system)

2. [Semi]

86

3. [Lame]

4. [Unused]

In this case, we would insert a CheckDB row and a CheckTable row into the Minion.CheckDBSettingsDB table
for each of the databases, specifying either GroupDBOrder, GroupOrder, or both, as needed. In the following
example, we have inserted CheckDB and CheckTable rows for each database, and specified the GroupOrder.

DBName Port OpLevel OpName Exclude GroupOrder GroupDBOrder

MinionDefault NULL DB CHECKDB 0 0 0
MinionDefault 1433 DB CHECKTABLE 0 0 0

YourDatabase NULL DB CHECKDB 0 100 0

YourDatabase NULL DB CHECKTABLE 0 100 0
Semi NULL DB CHECKDB 0 50 0

Semi NULL DB CHECKTABLE 0 50 0
Lame NULL DB CHECKDB 0 25 0

Lame NULL DB CHECKTABLE 0 25 0
Unused NULL DB CHECKDB 0 0 0

Unused NULL DB CHECKTABLE 0 0 0

NOTE: For GroupDBOrder and GroupOrder, higher numbers have a greater “weight” - they have a

higher priority - and will be backed up earlier than lower numbers. Note also that these columns are

TINYINT, so weighted values must fall between 0 and 255.

NOTE: When you insert a row for a database, the settings in that row override all of the default

operational settings for that database. So, inserting a row for [YourDatabase] means that ONLY

CheckDB settings from that row will be used for [YourDatabase]; none of the default settings will

apply to [YourDatabase].

NOTE: Any databases that rely on the default system-wide settings (represented by the row where

DBName=’MinionDefault’) will be backed up according to the values in the MinionDefault columns

GroupDBOrder and GroupOrder. By default, these are both 0 (lowest priority), and so non-specified

databases would be backed up last.

Because we have so few databases in this example, the simplest method is to assign the heaviest “weight” to

YourDatabase, and lesser weights to the other databases, in decreasing order. In our example, we would

insert four rows. Note that, for brevity, we use far fewer columns in our examples than you would need in an

actual environment:

INSERT INTO Minion.CheckDBSettingsDB
(DBName,
 OpLevel,
 OpName,
 Exclude,
 GroupOrder,
 GroupDBOrder,
 NoIndex,
 RepairOption,
 IsActive,

87

 Comment)
VALUES
(N'YourDatabase', 'DB', 'CHECKDB', 0, 100, 0, 0, 'NONE', 1, 'YourDatabase'),
(N'YourDatabase', 'DB', 'CHECKDB', 0, 100, 0, 0, 'NONE', 1, 'YourDatabase'),
(N'Semi', 'DB', 'CHECKDB', 0, 50, 0, 0, 'NONE', 1, 'Semi'),
(N'Semi', 'DB', 'CHECKTABLE', 0, 50, 0, 0, 'NONE', 1, 'Semi'),
(N'Lame', 'DB', 'CHECKDB', 0, 25, 0, 0, 'NONE', 1, 'Lame'),
(N'Lame', 'DB', 'CHECKTABLE', 0, 25, 0, 0, 'NONE', 1, 'Lame'),
(N'Unused', 'DB', 'CHECKDB', 0, 5, 0, 0, 'NONE', 1, 'Unused'),
(N'Unused', 'DB', 'CHECKTABLE', 0, 5, 0, 0, 'NONE', 1, 'Unused');

For a more complex ordering scheme, we could divide databases up into groups, and then order the

CheckDBs both by group, and within each group. The pseudocode for this example might be:

 Insert rows for databases YourDatabase and Semi, both with GroupOrder = 200

o Row YourDatabase: GroupDBOrder = 255

o Row Semi: GroupDBOrder = 100

 Insert rows for databases Lame and Unused, both with GroupOrder = 100

o Row YourDatabase: Lame = 255

o Row Semi: Unused = 100

The resulting checkdb order would be as follows:

1. YourDatabase

2. Semi

3. Lame

4. Unused

How To: Change schedules
Minion CheckDB offers you a choice of scheduling options:

 You can use the Minion.CheckDBSettingsServer table to configure flexible scheduling scenarios;

 Or, you can use the traditional approach of one job per integrity check schedule;

 Or, you can use a hybrid approach that employs a bit of both options.

For more information about CheckDB schedules, see “About: CheckDB Schedules”.

Table based scheduling
When Minion CheckDB is installed, it uses a single job (MinionCheckDB-AUTO) to run the stored procedure

Minion.CheckDBMaster with no parameters, every hour. When the Minion.CheckDBMaster procedure runs

without parameters, it uses the Minion.CheckDBSettingsServerDB table (among others) to determine its

runtime parameters – including the schedule of operations per integrity check type. This is how MC operates

by default, to allow for the most flexible scheduling with as few jobs as possible.

This document explains table based scheduling in the Quick Start section “Table based scheduling”.

88

Parameter based scheduling (traditional approach)
Other SQL Server maintenance solutions traditionally use one job per schedule. To use the traditional

approach of one job per schedule:

1. Disable or delete the MinionCheckDB-Auto job.

2. Configure new jobs for each integrity check schedule scenario you need.

Note: We highly recommend always using the Minion.CheckDBMaster stored procedure to run CheckDB and

CheckTable operations. While it is possible to use the procedure Minion.CheckDB to perform integrity checks,

doing so will bypass much of the configuration and logging benefits that Minion CheckDB was designed to

provide.

Run Minion.CheckDBMaster with parameters: The procedure takes a number of parameters that are specific

to the current maintenance run. (For full documentation of Minion.CheckDBMaster parameters, see the

“Minion.CheckDBMaster” section.)

To configure traditional, one-job-per-schedule operations, you might configure three new jobs:

MinionCheckDB-SystemCheckDB, to run DBCC CheckDB for each system database nightly at 9pm. The job step

should be something similar to:

EXEC Minion.CheckDBMaster @DBType = 'System'
 , @OpName = 'CHECKDB'
 , @StmtOnly = 0
 , @ReadOnly = 1;

MinionCheckDB-UserCheckDB, to run DBCC CheckDB for all but two user databases nightly at 10pm. The job

step should be something similar to:

EXEC Minion.CheckDBMaster @DBType = 'User'
 , @OpName = 'CHECKDB'
 , @StmtOnly = 0
 , @ReadOnly = 1
 , @Exclude = 'DB4,DB5';

MinionCheckDB-UserCheckTable, to run DBCC CheckTable for certain user databases nightly at 11:00pm. The

job step should be something similar to:

EXEC Minion.CheckDBMaster @DBType = 'User'
 , @OpName = 'CHECKDB'
 , @StmtOnly = 0
 , @ReadOnly = 1
 , @Include = 'DB4,DB5';

Hybrid scheduling
It is possible to use both methods – table based scheduling, and traditional scheduling – by one job that runs

Minion.CheckDBMaster with no parameters, and one or more jobs that run Minion.CheckDBMaster with

parameters.

89

We recommend against this, as hybrid scheduling has little advantage over either method, and increases the

complexity of your scenario. However, it may be that there are as yet unforeseen situations where hybrid

scheduling might be very useful.

How To: Configure timed settings
The “How To: Change Schedules” section described how to set up operational schedules. Timed settings are

different from schedules: they are settings that only apply during certain windows of time.

For example, we could configure a CheckDB schedule to run all databases at noon on Saturday, and a second

schedule to run “physical only” checks on DB1 nightly. We set up the schedule itself in

Minion.CheckDBSettingsServer:

SELECT ID
 , DBType
 , OpName
 , Day
 , ReadOnly
 , BeginTime
 , EndTime
 , MaxForTimeframe
 , IsActive
FROM Minion.CheckDBSettingsServer;

DBType OpName Day ReadOnly BeginTime EndTime MaxForTimeframe

System CHECKDB Daily 1 20:00:00 21:30:00 1
User CHECKDB Weekday 1 22:00:00 23:30:00 1

User CHECKDB Saturday 1 12:00:00 14:00:00 1

But, notice that our schedule doesn’t actually cover the “physical only” aspect of what we want. So, we must

configure PHYSICAL_ONLY in Minion.CheckDBSettingsDB, with the proper time window (weekdays):

SELECT DBName
 , OpLevel
 , OpName
 , IntegrityCheckLevel
 , BeginTime
 , EndTime
 , DayOfWeek
FROM Minion.CheckDBSettingsDB;

DBName OpLevel OpName IntegrityCheckLevel BeginTime EndTime DayOfWeek

MinionDefault DB CHECKDB PHYSICAL_ONLY 00:00:00 23:59:00 Weekday
MinionDefault DB CHECKTABLE PHYSICAL_ONLY 00:00:00 23:59:00 Weekday

MinionDefault DB CHECKDB NULL 00:00:00 23:59:00 Weekend
MinionDefault DB CHECKTABLE NULL 00:00:00 23:59:00 Weekend

90

If we put this all together on paper, here is what a week of operations looks like:

Day DBType Operation Begin Time Integrity Check Level
Monday through Friday System 20:00:00 PHYSICAL_ONLY

Monday through Friday User 22:00:00 PHYSICAL_ONLY
Saturday System 20:00:00 NULL

Saturday User 12:00:00 NULL

Sunday System 20:00:00 NULL
Sunday User (none)

How To: Generate statements only
Sometimes it is useful to generate integrity check statements and run them by hand, either individually or in

small groups. To generate statements without running the statements, run the procedure

Minion.CheckDBMaster with the parameter @StmtOnly set to 1.

Example code - The following code will generate full CheckDB statements for all system databases:

EXEC Minion.CheckDBMaster @DBType = 'User'
 , @OpName = 'CHECKDB'
 , @StmtOnly = 1
 , @ReadOnly = 1;

Running Minion.CheckDBMaster with @StmtOnly=1 will generate a list of Minion.CheckDB procedure

execution statements, all set to @StmtOnly=1. Running these Minion.CheckDBDB statements will generate

the DBCC CheckDB statements.

This is an excellent way to discover what settings Minion CheckDB will use for a particular database (or set

of databases).

How To: Run code before or after integrity checks
You can schedule code to run before or after integrity checks, using precode and postcode. Pre- and postcode

can be configured:

 Run code before or after the entire batch of operations

 Run code before or after a single database

 Run code before or after several, or each and every database

 Run code before or after a single table

 Run code before or after several, or each and every table in a database

 Run code before or after reindex statements (within the same statement batch)

IMPORTANT: Unless otherwise specified, pre- and postcode will run in the context of the Minion CheckDB

database (wherever the Minion CheckDB objects are stored); it was a design decision not to limit the code

91

that can be run to a specific database. Therefore, always use “USE” statements – or, for stored procedures,

three-part naming convention – for pre- and postcode.

Batch precode and postcode
Batch precode and postcode run before and after an entire integrity check operation.

To run code before or after the integrity check batch, update (or insert) the appropriate row in

Minion.CheckDBSettingsServer. In that row, populate the BatchPreCode column to run code before the

integrity check operation; and populate the column BatchPostCode to run code after the integrity check

operation. For example:

UPDATE Minion.CheckDBSettingsServer
SET BatchPreCode = 'EXEC master.dbo.IntegrityCheckPrep;'
 , BatchPostCode = 'EXEC master.dbo.IntegrityCheckCleanup;'
WHERE DBType = 'User'
 AND OpName = 'CHECKDB'
 AND Day = 'Saturday';

IMPORTANT: The Minion.CheckDBSettingServer columns BatchPreCode and BatchPostCode are only in effect

for table based scheduling – that is, running Minion.CheckDBMaster without parameters. If you use

parameter based scheduling, the only way to enact batch precode or batch postcode is with additional job

steps.

Database precode and postcode
Database precode and postcode run before and after an individual database; or, if there are multiple

databases in the batch, before and after each database integrity check operation.

To run code before or after a single database, insert a row for the database into Minion.CheckDBSettingsDB.

Populate the column DBPreCode to run code before the operations for that database; populate the column

DBPostCode to run code after the operations for that database. Note that this table requires two rows for

each database you enter: one CHECKDB and one CHECKTABLE. In our example, we want the precode and

postcode to run whether the database is running a CHECKDB operation or a CHECKTABLE, so we populate the

PreCode for both rows.

For example:

INSERT INTO [Minion].CheckDBSettingsDB
 ([DBName], [OpLevel], [OpName], [Exclude], [GroupOrder],
 [GroupDBOrder], [NoIndex], [RepairOption], [RepairOptionAgree],
 [AllErrorMsgs], [ExtendedLogicalChecks], [NoInfoMsgs], [IsTabLock],
 [IntegrityCheckLevel], [IsRemote], [ResultMode], [HistRetDays],
 [DefaultSchema], [DBPreCode], [DBPostCode], [DBInternalThreads],
 [LogSkips], [BeginTime], [EndTime], [DayOfWeek], [IsActive],
 [Comment])
VALUES ('DB1' -- DBName
 , 'DB' -- OpLevel

92

 , 'CHECKDB' -- OpName
 , 0 -- Exclude
 , 0 -- GroupOrder
 , 0 -- GroupDBOrder
 , 0 -- NoIndex
 , 'NONE' -- RepairOption
 , 0 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 0 -- ExtendedLogicalChecks
 , 0 -- NoInfoMsgs
 , 0 -- IsTabLock
 , 'PHYSICAL_ONLY' -- IntegrityCheckLevel
 , 0 -- IsRemote
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 'dbo' -- DefaultSchema
 , 'EXEC master.dbo.GenericSP1;' -- DBPreCode
 , 'EXEC master.dbo.GenericSP2;' -- DBPostCode
 , 1 -- DBInternalThreads
 , 1 -- LogSkips
 , '00:00:00' -- BeginTime
 , '23:59:00' -- EndTime
 , 'Weekday' -- DayOfWeek
 , 1 -- IsActive
 , 'DB1 CHECKDB on weekdays.')
 ,
 ('DB1' -- DBName
 , 'DB' -- OpLevel
 , 'CHECKTABLE' -- OpName
 , 0 -- Exclude
 , 0 -- GroupOrder
 , 0 -- GroupDBOrder
 , 0 -- NoIndex
 , 'NONE' -- RepairOption
 , 0 -- RepairOptionAgree
 , 1 -- AllErrorMsgs
 , 0 -- ExtendedLogicalChecks
 , 0 -- NoInfoMsgs
 , 0 -- IsTabLock
 , 'PHYSICAL_ONLY' -- IntegrityCheckLevel
 , 0 -- IsRemote
 , 'Full' -- ResultMode
 , 60 -- HistRetDays
 , 'dbo' -- DefaultSchema
 , 'EXEC master.dbo.GenericSP1;' -- DBPreCode
 , 'EXEC master.dbo.GenericSP2;' -- DBPostCode
 , 1 -- DBInternalThreads
 , 1 -- LogSkips
 , '00:00:00' -- BeginTime
 , '23:59:00' -- EndTime

93

 , 'Weekday' -- DayOfWeek
 , 1 -- IsActive
 , 'DB1 CHECKTABLE on weekdays.');

To run code before or after each and every database, update the MinionDefault row AND every database-

specific rows (if any) in Minion.CheckDBSettingsDB, populating the column DBPreCode or DBPostCode. For

example:

UPDATE [Minion].[CheckDBSettingsDB]
SET DBPreCode = 'EXEC master.dbo.GenericSP1;' ,
 DBPostCode = 'EXEC master.dbo.GenericSP1;'
WHERE DBName = 'MinionDefault'
 AND OpName IN ('CHECKDB', 'CHECKTABLE');

To run code before or after each of a few databases, insert one row for each of the databases into

Minion.CheckDBSettingsDB, populating the DBPreCode column and/or DBPostCode column as appropriate.

To run code before or after all but a few databases, update the MinionDefault row in

Minion.CheckDBSettingsDB, populating the DBPreCode column and/or the DBPostCode column as

appropriate. This will set up the execution code for all databases. Then, to prevent that code from running

on a handful of databases, insert a row for each of those databases to Minion.CheckDBSettingsDB, and keep

the DBPreCode and DBPostCode columns set to NULL.

For example, if we want to run the stored procedure dbo.SomeSP before each database except databases

DB1, DB2, and DB3, we would:

1. Update row in Minion.CheckDBSettingsDB for “MinionDefault”, setting PreCode to ‘EXEC

dbo.SomeSP;’

2. Insert a row to Minion.CheckDBSettingsDB for [DB1], establishing all appropriate settings, and

setting DBPreCode to NULL.

3. Insert a row to Minion.CheckDBSettingsDB for [DB2], establishing all appropriate settings, and

setting DBPreCode to NULL.

4. Insert a row to Minion.CheckDBSettingsDB for [DB3], establishing all appropriate settings, and

setting DBPreCode to NULL.

Note: The Minion.CheckDBSettingsDB columns DBPreCode and DBPostCode are in effect whether you are

using table based scheduling – that is, running Minion.CheckDBMaster without parameters – or using

parameter based scheduling. (This is not the case for batch precode and postcode, which the previous

section covers.)

Table precode and postcode
Table precode and postcode run before and after an individual table; or, if there are multiple table in the

batch, before and after each DBCC CheckTable operation.

94

To run code before or after a single table, insert a row for the table into Minion.CheckDBSettingsTable.

Populate the column TablePreCode to run code before the operations for that table; populate the column

TablePostCode to run code after the operations after that table.

For example:

INSERT INTO Minion.CheckDBSettingsTable
 (DBName , SchemaName , TableName , Exclude , DefaultTimeEstimateMins , NoIndex
 , AllErrorMsgs , ExtendedLogicalChecks , NoInfoMsgs , IsTabLock , ResultMode , HistRetDays
 , TablePreCode , TablePostCode , BeginTime , EndTime , DayOfWeek , IsActive
 , Comment
)
VALUES (N'DB1' -- DBName
 , N'dbo' -- SchemaName
 , N'MyTable' -- TableName
 , 0 -- Exclude
 , 10 -- DefaultTimeEstimateMins
 , 0 -- NoIndex
 , 1 -- AllErrorMsgs
 , 1 -- ExtendedLogicalChecks
 , 0 -- NoInfoMsgs
 , 0 -- IsTabLock
 , 'FULL' -- ResultMode
 , 30 -- HistRetDays
 , N'' -- TablePreCode
 , N'' -- TablePostCode
 , '00:00:00' -- BeginTime
 , '23:59:59' -- EndTime
 , 'Daily' -- DayOfWeek
 , 1 -- IsActive
 , 'DB1.dbo.MyTable daily CheckTable.'
);

To run code before or after each and every table, update the MinionDefault CHECKTABLE row AND every

database-specific CHECKTABLE rows (if any) in Minion.CheckDBSettingsDB, populating the column

TablePreCode or TablePostCode. For example:

UPDATE [Minion].[CheckDBSettingsDB]
SET TablePreCode = 'EXEC master.dbo.GenericSP1;' ,
 TablePostCode = 'EXEC master.dbo.GenericSP1;'
WHERE DBName = 'MinionDefault'
 AND OpName = 'CHECKTABLE';

To run code before or after each of a few tables, insert one row for each of the tables into

Minion.CheckDBSettingsTable, populating the TablePreCode column and/or TablePostCode column as

appropriate.

95

To run code before or after all but a few tables, update the MinionDefault row in

Minion.CheckDBSettingsDB, populating the TablePreCode column and/or the TablePostCode column as

appropriate. This will set up the execution code for all databases. Then, to prevent that code from running

on a handful of tables, insert a row for each of those databases to Minion.CheckDBSettingsTable, and keep

the TablePreCode and TablePostCode columns set to NULL.

For example, if we want to run the stored procedure dbo.SomeSP before each table except the DB1 tables T1

and T2, we would:

1. Update row in Minion.CheckDBSettingsDB for “MinionDefault”, setting TablePreCode to ‘EXEC

dbo.SomeSP;’.

2. Insert a row to Minion.CheckDBSettingsTable for [DB1].dbo.T1, establishing all appropriate

settings, and setting TablePreCode to NULL.

3. Insert a row to Minion.CheckDBSettingsTable for [DB1].dbo.T2, establishing all appropriate

settings, and setting TablePreCode to NULL.

Note: The columns TablePreCode and TablePostCode (in both Minion.CheckDBSettingsDB and

Minion.CheckDBSettingsTable) are in effect whether you are using table based scheduling – that is, running

Minion.CheckDBMaster without parameters – or using parameter based scheduling. (This is not the case for

batch precode and postcode, which an earlier section covers.)

Statement prefix and suffix
Statement prefix and suffix allow you to begin or end every integrity check statement with a statement of

your own. This is different from the precode and postcode, because it is run within the same batch.

Whereas, precode and postcode are run as completely separate statements, in different contexts.

You can set statement prefix and suffix (StmtPrefix, StmtSuffix) in Minion.CheckDBSettingsDB, or

Minion.CheckDBSettingsTable, or both. The best use case for this is turning a trace flag on and off

before/after your operations.

To set statement prefix and suffix at the database level, follow the same procedure in “Database precode and

postcode” above (substituting StmtPrefix/StmtSuffix for DBPrecode/DBPostcode).

To set statement prefix and suffix at the table level, follow the same procedure in “Table precode and

postcode” above (substituting StmtPrefix/StmtSuffix for TablePrecode/TablePostcode).

How To: Include or exclude READ_ONLY databases from integrity checks
You can control the inclusion of READ_ONLY databases in one of two ways: in the

Minion.CheckDBSettingsServer table, or using the Minion.CheckDBMaster stored procedure. For either

method, the ReadOnly values are:

 1 – Include READ_ONLY databases in the CheckDB routine. This is the default option.

 2 – Do NOT include READ_ONLY databases in the CheckDB routine.

96

 3 – ONLY include READ_ONLY databases in the CheckDB routine.

To exclude READ_ONLY databases using table based scheduling, update the ReadOnly field for the

appropriate rows in Minion.CheckDBSettingsServer:

UPDATE Minion.CheckDBSettingsServer
SET [ReadOnly] = 2
WHERE DBType = 'User'
 AND [Day] = 'Saturday';

To exclude READ_ONLY databases in the CheckDB routine, run the procedure Minion.CheckDBMaster with

the parameter @ReadOnly set to 2. For example, to perform CheckDB only on the read/write user databases,

use the following call:

EXEC [Minion].[CheckDBMaster]
 @DBType = 'User' ,
 @OpName = 'CHECKDB',
 @ReadOnly = 2;

To include READ_ONLY databases and read/write databases, set @ReadOnly=1. And to perform maintenance

only on read only databases, set @ReadOnly=3.

How To: Include databases in operations
By default, Minion CheckDB is configured to check all databases. As you fine tune your scenarios and

schedules, you may want to configure specific subsets of databases to be checked with different options, or

at different times.

You can limit the set of databases to be checked in a single operation via an explicit list, LIKE expressions, or

regular expressions. In the following two sections, we will work through the way to do this first via table

based scheduling, and then in traditional scheduling.

NOTE: The use of the regular expressions include and exclude features are not supported in SQL Server 2005.

Include databases in table based scheduling
Table based scheduling pulls CheckDB schedules and other options from the Minion.CheckDBSettingsServer

table. In this table, you have the following options for configuring which databases to include in CheckDB

operations:

 To include all databases in an operation, set Include = ‘All’ (or NULL) for the relevant row(s).

 To include a specific list of databases, set Include = a comma delimited list of those database

names, and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To include databases based on regular expressions, set Include = ‘Regex’. Then, configure the

regular expression in the Minion.DBMaintRegexLookup table.

97

We will use the following sample data as we demonstrate each of these options. This is a subset of

Minion.CheckDBSettingsServer columns:

ID DBType OpName Day BeginTime EndTime MaxForTimeframe Include Exclude
1 System CHECKDB Daily 22:00:00 22:30:00 1 NULL NULL

2 User CHECKDB Saturday 23:00:00 23:30:00 1 DB1,DB2 NULL
3 User CHECKDB Sunday 23:00:00 23:30:00 1 Regex NULL

4 User AUTO Weekday 23:00:00 23:30:00 1 NULL NULL

And, here are the contents of the Minion.DBMaintRegexLookup table:

Action MaintType Regex

Include CheckDB DB[3-5](?!\d)

Based on this data, Minion CheckDB would perform CheckDBs as follows:

 DBCC CheckDB for all system databases, daily at 10:00 pm.

 DBCC CheckDB for DB1 and DB2, Saturdays at 11:00 pm.

 DBCC CheckDB for databases included in the regular expressions table

(Minion.DBMaintRegexLookup), run Sundays at 11:00 pm. (This particular regular expression

includes DB3, DB4, and DB5, but does not include any database with a 2 digit number at the end,

such as DB35.)

 Operations for user databases every weekday at 11:00 pm. (The AUTO option allows Minion

CheckDB to choose the appropriate operation per database. For more information, see “How to:

Configure Minion CheckDB Dynamic Thresholds”.)

Note that you can create more than one regular expression in Minion.DBMaintRegexLookup. For example:

 To use Regex to include DB3, DB4, and DB5: insert a row like the example above, where Regex =

’DB[3-5](?!\d)’.

 To use Regex to include any database beginning with the word “Market” followed by a number:

insert a row where Regex=’Market[0-9]’.

 With these two rows, a CheckDB operation with @Include=’Regex’ will CheckDB both the DB3-DB5

databases, and the databases Marketing4 and Marketing308 (and similar others, if they exist).

Include databases in traditional scheduling
We refer the common practice of configuring integrity checks in separate jobs (to allow for multiple

schedules) as “traditional scheduling”. Shops that use traditional scheduling will run Minion.CheckDBMaster

with parameters configured for each particular run.

You have the following options for configuring which databases to include in integrity check operations:

 To include all databases in a CheckDB operation, set @Include = ‘All’ (or NULL).

98

 To include a specific list of databases, set @Include = a comma delimited list of those database

names, and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To include databases based on regular expressions, set @Include = ‘Regex’. Then, configure the

regular expression in the Minion.DBMaintRegexLookup table.

The following example executions will demonstrate each of these options.

First, to run DBCC CheckDB on all user databases, we would execute Minion.CheckDBMaster with these (or

similar) parameters:

-- @Include = NULL for all databases
EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName= 'CHECKDB',
 @StmtOnly = 1,
 @Include = NULL,
 @Exclude=NULL,
 @ReadOnly=1;

To include a specific list of databases:

-- @Include = a specific database list (YourDatabase, all DB1% DBs, and DB2)
EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 1,
 @Include = 'YourDatabase,DB1%,DB2',
 @Exclude=NULL,
 @ReadOnly=1;

To include databases based on regular expressions, first insert the regular expression into the

Minion.DBMaintRegexLookup table, and then execute Minion.CheckDBMaster with @Include=’Regex’:

INSERT INTO Minion.DBMaintRegexLookup
 ([Action] ,
 [MaintType] ,
 [Regex]
)
SELECT 'Include' AS [Action] ,
 'CheckDB' AS [MaintType] ,
 'DB[3-5](?!\d)' AS [Regex];

-- @Include = 'Regex' for regular expressions
EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 1,
 @Include = 'Regex',

99

 @Exclude=NULL,
 @ReadOnly=1;

For information on Include/Exclude precedence (that applies to both the Minion.CheckDBSettingsServer

columns, and to the parameters), see “Include and Exclude Precedence”.

How To: Exclude databases from operations
By default, Minion CheckDB is configured to perform integrity checks on all databases. As you fine tune your

scenarios and schedules, you may want to exclude certain databases from scheduled integrity check

operations, or even from all integrity check operations.

You can exclude databases from all integrity check operations via the Exclude column in

Minion.CheckDBSettingsDB. Or, you can exclude databases from integrity check operations via an explicit list,

LIKE expressions, or regular expressions. In the following three sections, we will work through Exclude=1,

then excluding databases from table based scheduling, and finally excluding from traditional scheduling.

NOTE: The use of the regular expressions include and exclude features are not supported in SQL Server 2005.

Exclude a database from all integrity checks
To exclude a database – for example, DB13 – from all integrity checks, just insert database-specific rows for

that database into Minion.CheckDBSettingsDB, one with CheckDBType=CHECKDB and one with

CheckDBType=CHECKTABLE; and Exclude=1:

INSERT INTO [Minion].CheckDBSettingsDB
(DBName
, OpLevel
, OpName
, Exclude
, IsActive
, Comment
)

VALUES
('DB13' -- DBName
, 'DB' -- OpLevel
, 'CHECKDB' -- OpName
, 1 -- Exclude
, 1 -- IsActive
, 'Exclude DB13' -- Comment
),
('DB13' -- DBName
, 'DB' -- OpLevel
, 'CHECKTABLE' -- OpName
, 1 -- Exclude
, 1 -- IsActive
, 'Exclude DB13' -- Comment
);

100

IMPORTANT: This insert has a bare minimum of options, as the row is only intended to exclude DB13 from

the CheckDB routine. We recommend configuring individual database rows with the full complement of

settings if there is a chance that integrity checks may be re-enabled for that database in the future.

IMPORTANT: Exclude=1 can be overridden by an explicit Include. For more information, see “Include and

Exclude Precedence”.

Exclude databases in table based scheduling
Table based scheduling pulls operational schedules (and other options) from the

Minion.CheckDBSettingsServer table. In this table, you have the following options for configuring which

databases to exclude from CheckDB operations:

 To exclude a specific list of databases, set Exclude = a comma delimited list of those database

names, and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

 To exclude databases based on regular expressions, set Exclude = ‘Regex’. Then, configure the

regular expression in the Minion.DBMaintRegexLookup table.

We will use the following sample data as we demonstrate each of these options. This is a subset of

Minion.CheckDBSettingsDBServer columns:

ID DBType OpName Day BeginTime EndTime Include Exclude

1 System AUTO Daily 21:00:00 23:59:00 NULL NULL

2 User AUTO Saturday 22:00:00 23:59:00 NULL RegEx
3 User AUTO Sunday 22:00:00 23:59:00 DB1,DB2 NULL

And, here are the contents of the Minion.DBMaintRegexLookup table:
Action MaintType Regex

Exclude CheckDB DB[3-5](?!\d)

Based on this data, Minion CheckDB would perform operations as follows:

System databases would get CheckDB or CheckTable operations (based on settings in the

Minion.CheckDBSettingsAutoThresholds table) daily at 9pm.

User databases – except for those excluded via the regular expressiosn table – would get CheckDB or

CheckTable operations (based on settings in the Minion.CheckDBSettingsAutoThresholds table) Saturday at

9pm.

Full user database CheckDBs for all databases – except for those excluded via the regular expressions table

(Minion.DBMaintRegexLookup) – run Saturdays at 10pm. This particular regular expression excludes DB3,

DB4, and DB5 from CheckDBs, but does not exclude any database with a 2 digit number at the end, such as

DB35.

Full user database CheckDBs for databases DB1 and DB2 run Sundays at 10pm.

101

Note that you can create more than one regular expression in Minion.DBMaintRegexLookup. For example:

To use Regex to exclude DB3, DB4, and DB5: insert a row like the example above, where Regex = ’DB[3-

5](?!\d)’.

To use Regex to exclude any database beginning with the word “Market” followed by a number: insert a

row where Regex=’Market[0-9]’.

With these two rows, a CheckDB operation with @Exclude=’Regex’ will exclude both the DB3-DB5 databases,

and the databases Marketing4 and Marketing308 (and similar others, if they exist) from integrity checks.

_
/ \

|***|
__/

Exclude databases in traditional scheduling
We refer the common practice of configuring maintenance in separate jobs (to allow for multiple schedules)

as “traditional scheduling”. Shops that use traditional scheduling will run Minion.CheckDBMaster with

parameters configured for each particular CheckDB run.

You have the following options for configuring which databases to exclude from integrity check operations:

To exclude a specific list of databases, set @Exclude = a comma delimited list of those database names,

and/or LIKE expressions. (For example: ‘YourDatabase, DB1, DB2’, or ‘YourDatabase, DB%’.)

To exclude databases based on regular expressions, set @ Exclude = ‘Regex’. Then, configure the regular

expression in the Minion.DBMaintRegexLookup table.

The following example executions will demonstrate each of these options.

First, to exclude a specific list of databases:

-- @Exclude = a specific database list (YourDatabase, all DB1% DBs, and DB2)
EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 1, -- Only generate the statements for now!
 @Include = NULL,
 @Exclude='YourDatabase,DB1%,DB2',
 @ReadOnly=1;

To exclude databases based on regular expressions, first insert the regular expression into the

Minion.DBMaintRegexLookup table, and then execute Minion.CheckDBMaster with @Exclude=’Regex’:

INSERT INTO Minion.DBMaintRegexLookup
 ([Action] ,
 [MaintType] ,

102

 [Regex]
)
SELECT 'Exclude' AS [Action] ,
 'CheckDB' AS [MaintType] ,
 'DB[3-5](?!\d)' AS [Regex]
-- @Exclude = 'Regex' for regular expressions
EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKDB',
 @StmtOnly = 1, -- Only generate the statements for now!

@Include = NULL,
 @Exclude='Regex',
 @ReadOnly=1;

For information on Include/Exclude precedence (that applies to both the Minion.CheckDBSettingsDBServer

columns, and to the parameters), see “Include and Exclude Precedence”.

How To: Include or exclude tables from operations
By default, Minion CheckDB is configured to check all databases and all tables. As you fine tune your

scenarios and schedules, you may want to configure specific subsets of tables to be checked with different

options, or at different times.

You can limit the set of tables to be checked in a single operation via an explicit list, and/or LIKE expressions.

In the following two sections, we will work through the way to do this first via table based scheduling, and

then in traditional scheduling.

Include tables in table based scheduling
Table based scheduling pulls schedules and other options from the Minion.CheckDBSettingsServer table. In

this table, you have the following options for configuring which tables to include in CheckDB operations:

 To include all tables in CheckTable operations, set Tables = NULL for the relevant row(s).

 To include all tables in one or more schemas in CheckTable operations, set Tables = NULL and

Schemas = a comma delimited list of those schema names.

 To include a specific list of tables, set Tables = a comma delimited list of those table names, and/or

LIKE expressions. (For example: ‘YourTable, T1, T2’, or ‘YourTable, T%’.)

We will use the following sample data as we demonstrate each of these options. This is a subset of

Minion.CheckDBSettingsServer columns:

ID DBType OpName Day BeginTime EndTime MaxForTimeframe Schemas Tables

1 System CHECKDB Daily 22:00:00 22:30:00 1 NULL NULL
2 User CHECKDB Saturday 23:00:00 23:30:00 1 NULL NULL

3 User CHECKTABLE Daily 21:00:00 22:30:00 1 dbo T1,T2

4 User CHECKTABLE Daily 20:00:00 21:30:00 1 M1 NULL

103

Based on this data, Minion CheckDB would perform operations as follows:

 DBCC CheckDB for all system databases, daily at 10:00 pm.

 DBCC CheckDB for user databases, Saturdays at 11:00 pm.

 DBCC CheckTable for tables dbo.T1 and dbo.T2, daily at 9:00 pm. Note that as Include = NULL (not

shown), MC will perform a CheckTable on ALL tables named dbo.T1 and dbo.T2, in any database.

 DBCC CheckTable for all tables in schema “M1”, daily at 8:00 pm. Note that as Include = NULL (not

shown), MC will perform a CheckTable on ALL tables in the M1 schema, in any database.

Include tables in traditional scheduling
We refer the common practice of configuring integrity checks in separate jobs (to allow for multiple

schedules) as “traditional scheduling”. Shops that use traditional scheduling will run Minion.CheckDBMaster

with parameters configured for each particular run.

You have the following options for configuring which tables to include in integrity check operations:

 To include all tables in a DBCC CheckTable operation, set @Tables = NULL.

 To include all tables in one or more schemas, set @Tables = NULL and @Schemas = a comma

delimited list of those schema names.

 To include a specific list of databases, set @Tables = a comma delimited list of those table names,

and/or LIKE expressions. (For example: ‘YourTable, T1, T2’, or ‘YourTable, T%’.)

IMPORTANT: @Schemas does not limit @Tables; if you set @Schemas = ‘A’ and @Tables = ‘T1’, MC will

attempt to process all tables within schema ‘A’, PLUS all tables named T1 (MC will look for dbo.T1 unless

otherwise specified in DefaultSchema). However, @DBName limits both @Schemas and @Tables.

The following example executions will demonstrate each of these options.

First, to run DBCC CheckTables on all user databases, we would execute Minion.CheckDBMaster with these

(or similar) parameters:

EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName= 'CHECKTABLE',
 @StmtOnly = 1,
 @Include = NULL,
 @Exclude=NULL,
 @Schemas=NULL,
 @Tables=NULL,
 @ReadOnly=1;

To run DBCC CheckTables on all tables in a database:

EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKTABLE',

104

 @StmtOnly = 1,
 @Include = 'DB1',
 @Exclude=NULL,

@Schemas= NULL,
 @Tables=NULL,
 @ReadOnly=1;

To run DBCC CheckTables on a specific list of schemas in a database:

EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKTABLE',
 @StmtOnly = 1,
 @Include = 'DB1',
 @Exclude=NULL,

@Schemas='A,B,dbo,M%',
 @Tables=NULL,
 @ReadOnly=1;

To run DBCC CheckTables on a specific list of tables in a database:

EXEC Minion.CheckDBMaster
 @DBType = 'User',
 @OpName = 'CHECKTABLE',
 @StmtOnly = 1,
 @Include = 'DB1',
 @Exclude=NULL,

@Schemas= NULL,
 @Tables='dbo.T1,A.tab,B.tab',
 @ReadOnly=1;

This is not a comprehensive set of the things you can do with traditional scheduling, but only a small sample.

For more information, see “Minion.CheckDBMaster”.

How to: Configure Dynamic Thresholds
Minion CheckDB allows you to automate whether databases get a DBCC CheckDB operation, or a DBCC

CheckTable operation. Configure dynamic integrity check thresholds in the

Minion.CheckDBSettingsAutoThresholds table. These settings only apply to runs of the stored procedure

Minion.CheckDBMaster where OpName = ‘Auto’ in Minion.CheckDBSettingsDB (or, for a manual run, where

@OpName = ‘Auto’).

The default entry that comes installed with Minion CheckDB sets a threshold by size, at 100 GB. What this

means is that by default – for Minion.CheckDBMaster runs with @OpName = ‘Auto’, any database under 100

GB gets a CheckDB operation instead of a CheckTable operation.

105

Note: As outlined in the “Configuration Settings Hierarchy” section, more specific settings in a table take

precedence over less specific settings. So if you insert a database-specific row for DB1 to this table, that row

will be used for DB1 (instead of the “MinionDefault” row).

Let’s take the example where the Minion.CheckDBSettingsAutoThresholds “MinionDefault” row is set at 100

GB, but we need DB1 to have a CHECKDB operation if it’s under 50 GB. Insert a row for DB1 to override

MinionDefault (for that database):

INSERT INTO Minion.CheckDBSettingsAutoThresholds
 ([DBName]
 , [ThresholdMethod]
 , [ThresholdType]
 , [ThresholdMeasure]
 , [ThresholdValue]
 , [IsActive]
 , [Comment]
)
SELECT 'DB1' AS [DBName]
 , 'Size' AS [ThresholdMethod]
 , 'DataAndIndex' AS [ThresholdType]
 , 'GB' AS [ThresholdMeasure]
 , 50 AS [ThresholdValue]
 , 1 AS [IsActive]
 , 'DB1' AS [Comment];

The setting applies to any run of Minion.CheckDBMaster where OpName = ‘AUTO’ in

Minion.CheckDBSettingsDB (or, for a manual run, where @OpName = ‘Auto’). So, let’s insert a row to the

Minion.CheckDBSettingsServer table for a Sunday AUTO run:

INSERT INTO Minion.CheckDBSettingsServer
 (DBType
 , OpName
 , Day
 , ReadOnly
 , BeginTime
 , EndTime
 , MaxForTimeframe
 , FrequencyMins
 , Schemas
 , Debug
 , FailJobOnError
 , FailJobOnWarning
 , IsActive
 , Comment
)
VALUES ('User' -- DBType
 , 'AUTO' -- OpName
 , 'Sunday' -- Day

106

 , 1 -- ReadOnly
 , '14:00:00' -- BeginTime
 , '18:00:00' -- EndTime
 , 1 -- MaxForTimeframe
 , 0 -- FrequencyMins
 , NULL -- Schemas
 , 0 -- Debug
 , 0 -- FailJobOnError
 , 0 -- FailJobOnWarning
 , 1 -- IsActive
 , 'Sunday AUTO op' -- Comment

);

That’s it!

How to: Configure Rotational Scheduling
Minion CheckDB allows you to define a rotation scenario for your operations. For example, a nightly round of

10 databases would perform integrity checks on 10 databases the first night, another 10 databases the

second night, and so on. You can schedule rotations for CheckTable operations, CheckDB operations, or

both.

You can also use the rotational scheduling to limit operations by time; for example, you could configure MC

to cycle through DBCC CheckDB operations for 90 minutes each night. Note that the timed rotations are an

experimental feature; test first and use with caution!

The table Minion.CheckDBSettingsRotation holds the rotation scenario for your operations (e.g., “run

CheckDB on 10 databases every night; the next night, process the next 10; and so on”). This table applies to

both CheckDB and CheckTable operations.

Scenario 1: Run CheckDB on 10 databases each night.

The Minion.CheckDBSettingsRotation comes installed with inactive, default rows for different rotation

scenarios. To run DBCC CheckDB on 10 databases each night, enable the “CheckDB/DBCount” row and make

sure that RotationMetricValue is set to 10:

UPDATE Minion.CheckDBSettingsRotation
SET IsActive = 1,
 RotationMetricValue = 10
WHERE DBName = 'MinionDefault'
 AND OpName = 'CHECKDB'
 AND RotationLimiter = 'DBCount';

Scenario 2: Run CheckTable on 50 tables each night.

107

The Minion.CheckDBSettingsRotation comes installed with inactive, default rows for different rotation

scenarios. To run DBCC CheckTable on 50 tables each night, enable the “CheckTable/DBCount” row and make

sure that RotationMetricValue is set to 50:

UPDATE Minion.CheckDBSettingsRotation
SET IsActive = 1,
 RotationMetricValue = 50
WHERE DBName = 'MinionDefault'
 AND OpName = 'CHECKTABLE'
 AND RotationLimiter = 'DBCount';

How to: Set up CheckDB on a Remote Server
Minion CheckDB allows you to run DBCC CheckDB remotely for any database. The “Dynamic Remote

CheckDB” feature additionally allows you to set a tuning threshold, so the CheckDB will run remotely only if it

is above that threshold.

Note: See “About: Remote CheckDB” for remote CheckDB requirements and information.

We can configure one of many remote CheckDB scenarios. Starting with the simplest scenario:

 Remote CheckDB for all databases

 Remote CheckDB for a single database

 Remote CheckDB for any database above a certain size (remote thresholds)

Scenario 1: Remote CheckDB for all databases
Here we will configure remote CheckDB operations for all databases. If the remote CheckDB requirements

are met, the only step is to enable and configure remote CheckDB.

To enable and configure remote CheckDB for all databases, update Minion.CheckDBSettingsDB:

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 1
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL
 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Disconnected'
 , RemoteRestoreMode = 'LastMinionBackup'
 , DropRemoteDB = 1
 , DropRemoteJob = 1
WHERE OpName = 'CHECKDB';

Because we are updating every CHECKDB row in the table, all CheckDB operations will be conducted on the

remote server.

108

You can look up the meaning of each of these fields in the Minion.CheckDBSettingsDB section. But this

update statement does need some immediate discussion:

 IsRemote enables remote CheckDB.

 Edit PreferredServer to reflect the name of your remote server.

 The definition of PreferredDBName and RemoteJobName are entirely up to you. Notice that in the

statement above, we use default Inline Tokens “Server” and “DBName”. Get more information about

that in “About: Inline Tokens”.

 The choice between Connected and Disconnected RemoteCheckDBMode is entirely yours.

Connected mode has fewer moving parts internally; but Disconnected mode has higher tolerance for

things like network fluctuations.

 You can learn more about RemoteRestoreMode more in the “About: Remote CheckDB” section. In

brief, LastMinionBackup (and NewMinionBackup) requires Minion Backup 1.3 running on the local

server.

 DropRemoteDB set to 0 will retain the remote database after the operation is complete. If you set it

to 1, then at the end of the DBCC operation, Minion CheckDB will drop the remote database. For

RemoteRestoreMode = NewMinionBackup or LastMinionBackup, it usually makes sense to enable

DropRemoteDB.

 The only reason to set DropRemoteJob = 0 is for troubleshooting purposes. Otherwise, we highly

recommend enabling this.

From here on, any CheckDB operation will be completed on the remote server, and the information will be

logged locally (in the source server).

Scenario 2: Remote CheckDB for a single database
The process for setting up remote CheckDB for a single database is remarkably similar to Scenario 1, above.

The difference is, of course, we must configure the individual database settings. So the steps are:

1. Insert rows for CHECKDB and CHECKTABLE, for the single database. (That is, of course, if rows do not

already exist for that database.)

2. Enable and configure remote CheckDB in Minion.CheckDBSettingsDB.

Note: Each level of settings (that is, the default level, and each database level) should have one row for

CHECKTABLE and one row for CHECKDB. For more information, see “Configuration Settings Hierarchy”.

First, insert rows for CHECKDB and CHECKTABLE for the single database. For our example, we’ll use DB1:

INSERT INTO Minion.CheckDBSettingsDB
 (DBName, OpLevel, OpName, Exclude, GroupOrder, GroupDBOrder, NoIndex,
 RepairOption, RepairOptionAgree, AllErrorMsgs, ExtendedLogicalChecks,
 NoInfoMsgs, IsTabLock, IsRemote, ResultMode, HistRetDays, LogSkips,
 BeginTime, EndTime, DayOfWeek, IsActive, Comment)
VALUES (N'DB1', 'DB', 'CHECKDB', 0, 0, 0, 0, 'LastMinionBackup', 1, 1, 0, 0, 0, 1,
 'Full', 60, 1, '00:00:00', '23:59:00', 'Daily', 1, 'DB1'),
 (N'DB1', 'DB', 'CHECKTABLE', 0, 0, 0, 0, 'LastMinionBackup', 1, 1, 0, 0, 0, 1,

109

 'Full', 60, 1, '00:00:00', '23:59:00', 'Daily', 1, 'DB1 CheckTable');

You can use the stored procedure “Minion.CloneSettings” to easily generate a template insert statement.

Next, to enable and configure remote CheckDB for all databases, update the DB1 CHECKDB row in

Minion.CheckDBSettingsDB:

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 1
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL
 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Disconnected'
 , RemoteRestoreMode = 'LastMinionBackup'
 , DropRemoteDB = 1
 , DropRemoteJob = 1
WHERE DBName = 'DB1'
 AND OpName = 'CHECKDB';

From now on, all CheckDB operations for database DB1 will be conducted on the remote server.

Scenario 3: Remote CheckDB for any database above a certain size
Minion CheckDB allows you to define thresholds to prevent smaller databases from taking part in remote

CheckDB operations.

Here we will configure remote CheckDB operations for any database above 10 GB. The steps are:

1. Set IsRemote = 0, and configure remote CheckDB in Minion.CheckDBSettingsDB.

2. Configure the threshold in Minion.CheckDBSettingsRemoteThresholds.

Note: It may seem counterintuitive to turn IsRemote off, but it makes sense if you understand what that field

is for. “IsRemote” turns on remote CheckDB for all databases (that the given row applies to). What we want

is to handle remote operations dynamically, based on database size. So, we set IsRemote = 0 – meaning, “I

want operations to be local unless a database crosses the threshold”.

First, set IsRemote = 0, and configure remote CheckDB in Minion.CheckDBSettingsDB:

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 0 -- Important!
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL
 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Disconnected'
 , RemoteRestoreMode = 'LastMinionBackup'

110

 , DropRemoteDB = 1
 , DropRemoteJob = 1
WHERE OpName = 'CHECKDB';

Last, configure the threshold in Minion.CheckDBSettingsRemoteThresholds. This table comes with a

“MinionDefault” default row configured, so we can simply update and activate that:

UPDATE Minion.CheckDBSettingsRemoteThresholds
SET ThresholdValue = 10
 , IsActive = 1
WHERE DBName = 'MinionDefault';

Scenario 4: Remote CheckDB for all databases, connected mode
Any of the above scenarios can use Connected mode or Disconnected mode. The difference is simply settings

RemoteCheckDBMode = Connected:

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 1
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL
 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Connected'
 , RemoteRestoreMode = 'LastMinionBackup'
 , DropRemoteDB = 1
 , DropRemoteJob = 1
WHERE OpName = 'CHECKDB';

For more on Disconnected and Connected modes, see:

 “About: Remote CheckDB”

 the discussion in “About: Minion CheckDB Operations”

 “Minion.CheckDBSettingsDB”

Scenario 5: Remote CheckDB for all databases, using third party restores
Any of the above scenarios can use third party restores instead of Minion Backup 1.3 restores. The difference

is twofold: set RemoteRestoreMode = NONE, and be sure that an external process provides the database on

the remote server (via restore, detatch/attach, etc.).

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 1
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL

111

 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Connected'
 , RemoteRestoreMode = 'NONE'
 , DropRemoteDB = 0
 , DropRemoteJob = 1
WHERE OpName = 'CHECKDB';

Note: In this scenario, we have chosen RemoteRestoreMode = NONE. This does not require Minion Backup

1.3, but does require some outside process to restore the desired database to the remote server.

In this example we set DropRemoteDB = 0. In most situations where an external process is managing

restores, that process also manages database retention. Of course, you should judge for your own situation

whether it makes sense to keep or remove the database from the remote server after CheckDB.

For more on remote CheckDB modes, see:

 “About: Remote CheckDB”

 the discussion in “About: Minion CheckDB Operations”

 “Minion.CheckDBSettingsDB”

Scenario 6: Remote CheckDB for all databases, using new Minion Backup
Any of the above scenarios can use a new Minion Backup instead of an existing MB backup, or an external

process restore. The process is:

1. Configure the remote CheckDB in Minion.CheckDBSettingsDB with RemoteRestoreMode =

NewMinionBackup.

2. Configure a new row in Minion.BackupSettings with BackupType = CheckDB.

3. Modify the restore settings in Minion.BackupRestoreSettingsPath as needed.

4. Modify the thresholds in Minion.BackupRestoreTuningThresholds as needed.

First, configure the remote CheckDB:

UPDATE Minion.CheckDBSettingsDB
SET IsRemote = 1
 , IncludeRemoteInTimeLimit = 0
 , PreferredServer = 'YourRemoteSvr1'
 , PreferredServerPort = NULL
 , PreferredDBName = '%DBName%'
 , RemoteJobName = 'MinionCheckDB-%Server%_%DBName%'
 , RemoteCheckDBMode = 'Disconnected'
 , RemoteRestoreMode = 'NewMinionBackup'
 , DropRemoteDB = 1
 , DropRemoteJob = 1
WHERE OpName = 'CHECKDB';

112

Next, configure a new row in Minion.BackupSettings with BackupType = CheckDB:

INSERT INTO Minion.BackupSettings
 ([DBName]
 , [BackupType]
 , [Exclude]
 , [GroupOrder]
 , [GroupDBOrder]
 , [Mirror]
 , [DelFileBefore]
 , [DelFileBeforeAgree]
 , [PushToMinion]
 , [HistRetDays]
 , [DynamicTuning]
 , [Verify]
 , [ShrinkLogOnLogBackup]
 , [Encrypt]
 , [Checksum]
 , [Init]
 , [Format]
 , [CopyOnly]
 , [IsActive]
 , [Comment]
)
SELECT 'MinionDefault' AS [DBName]
 , 'CheckDB' AS [BackupType] -- Important!
 , 0 AS [Exclude]
 , 50 AS [GroupOrder]
 , 0 AS [GroupDBOrder]
 , 0 AS [Mirror]
 , 0 AS [DelFileBefore]
 , 0 AS [DelFileBeforeAgree]
 , 'Local' AS [PushToMinion]
 , 30 AS [HistRetDays]
 , 1 AS [DynamicTuning]
 , '0' AS [Verify]
 , 0 AS [ShrinkLogOnLogBackup]
 , 0 AS [Encrypt]
 , 0 AS [Checksum]
 , 1 AS [Init]
 , 1 AS [Format]
 , 1 AS [CopyOnly] -- Optional
 , 1 AS [IsActive]
 , 'Settings for Minion CheckDB remote operations.' AS [Comment];

Modify the restore settings as needed:

UPDATE Minion.BackupRestoreSettingsPath
SET RestoreDrive = 'F:\'

113

 , RestorePath = 'SQLData\'
 , RestoreDBName = '%DBName%.%Date%'
WHERE DBName = 'MinionDefault';

Finally, insert thresholds into Minion.BackupRestoreTuningThresholds as needed:

INSERT INTO [Minion].BackupRestoreTuningThresholds
 ([ServerName]
 , [DBName]
 , [RestoreType]
 , [SpaceType]
 , [ThresholdMeasure]
 , [ThresholdValue]
 , [Buffercount]
 , [MaxTransferSize]
 , [BlockSize]
 , [Replace]
 , [WithFlags]
 , [BeginTime]
 , [EndTime]
 , [DayOfWeek]
 , [IsActive]
 , [Comment]
)
SELECT 'MinionDefault' AS [ServerName]
 , 'MinionDefault' AS [DBName]
 , 'All' AS [RestoreType]
 , 'DataAndIndex' AS [SpaceType]
 , 'GB' AS [ThresholdMeasure]
 , 0 AS [ThresholdValue]
 , 0 AS [Buffercount]
 , 0 AS [MaxTransferSize]
 , 0 AS [BlockSize]
 , 0 AS [Replace]
 , 0 AS [WithFlags]
 , '00:00:00' AS [BeginTime]
 , '23:59:59' AS [EndTime]
 , 'Daily' AS [DayOfWeek]
 , 1 AS [IsActive]
 , 'Zero level thresholds for all servers, all DBs.' AS [Comment]
UNION
SELECT 'MinionDefault' AS [ServerName]
 , 'MinionDefault' AS [DBName]
 , 'All' AS [RestoreType]
 , 'DataAndIndex' AS [SpaceType]
 , 'GB' AS [ThresholdMeasure]
 , 10 AS [ThresholdValue]
 , 30 AS [Buffercount]
 , 1048576 AS [MaxTransferSize]

114

 , 0 AS [BlockSize]
 , 0 AS [Replace]
 , 0 AS [WithFlags]
 , '00:00:00' AS [BeginTime]
 , '23:59:59' AS [EndTime]
 , 'Daily' AS [DayOfWeek]
 , 1 AS [IsActive]
 , '10GB thresholds for all servers, all DBs.' AS [Comment];

Note: You can set your CheckDB backups as Copy Only backups, so you don’t interfere with the normal run of

backups.

How to: Limit operations by time
You can limit integrity check operations by time in one of two ways: by passing in the time limit as a

parameter to Minion.CheckDBMaster, or by using timed rotations.

Operation run time estimates are calculated based on past operations, per database. If a database has never

had an integrity check through Minion CheckDB, the system uses the DefaultTimeEstimateMins field in the

Minion.CheckDBSettingsDB table.

Limit time by parameter
Minion.CheckDBMaster has a @TimeLimitInMins parameter that applies to both CHECKDB and CHECKTABLE

operations.

IMPORTANT: If you run the procedure with the @TimeLimitInMins parameter set, it trumps any other time

limit setting, including timed rotations.

To run DBCC CheckDB for all user databases, and limit the run to 120 minutes, execute

Minion.CheckDBMaster with @TimeLimitInMins = 120:

EXEC Minion.CheckDBMaster @DBType = 'User'
 , @OpName = 'CHECKDB'
 , @StmtOnly = 0
 , @ReadOnly = 1
 , @TimeLimitInMins = 120;

Limit time using timed rotations
Enter in a timed CheckDB row for the time limitation you want.

If you want a time rotation, you not only need the value in the Minion.CheckDBSettingsRotation
table, but you also need to set the TimeLimit param to 0 or NULL.

IMPORTANT: This is an experimental feature; test first and use with caution.

115

How to: Configure Custom Snapshots
When you run DBCC CheckDB or DBCC CheckTable, behind the scenes SQL Server creates a snapshot of the

database to run the operation against. SQL Server decides where to place the files for these snapshots, and

deletes the snapshot after the operation is complete.

If your version of SQL Server supports it, you can also choose to create a custom snapshot. You might want to

do this if your operation takes long enough that the internal snapshot would grow too large (and risk filling

up the drive), which would stop the operation.

Note: SQL Server 2016 and earlier versions only allow custom snapshots for Enterprise edition. SQL Server

2016 SP1 allow custom snapshots in any edition.

For CheckDB, custom snapshots allow you to determine where the snapshot file(s) will be located. For

CheckTable, custom snapshots allow you both to set the file locations, and to drop and recreate the snapshot

every few minutes (which we call “custom dynamic snapshots”). What follows are a few scenarios that cover

both custom snapshots, and custom dynamic snapshots.

For more information, see the section “About: Custom Snapshots”, and the video “Custom Snapshot Basics”

on YouTube: https://youtu.be/0PVFXm6KDr0

Scenario 1: Custom snapshots for all operations
To configure custom snapshots for all databases:

1. Enable custom snapshots: Update the two MinionDefault rows in Minion.CheckDBSettingsSnapshot,

with CustomSnapshot=1.

2. Configure paths: Configure the snapshot file location(s) in Minion.CheckDBSnapshotPath.

First, we update Minion.ChekDBSettingsSnapshot. Minion CheckDB comes with two “MinionDefault” rows in

this table – one for CHECKDB and one for CHECKTABLE – both with CustomSnapshot = 0. These are example

rows so you can easily enable custom snapshots:

UPDATE Minion.CheckDBSettingsSnapshot
SET CustomSnapshot = 1
 , DeleteFinalSnapshot = 1
 , IsActive = 1
WHERE DBName = 'MinionDefault';

Note: We strongly recommend you review the settings available in the Minion.CheckDBSettingsSnapshot

table and configure them as needed. In the example above, we have simply enabled custom snapshots and

configured the system to delete the custom snapshot after operations are complete.

Then, we update the MinionDefault rows in Minion.CheckDBSnapshotPath:

UPDATE Minion.CheckDBSnapshotPath
SET SnapshotDrive = 'D:\'

https://youtu.be/0PVFXm6KDr0

116

 , SnapshotPath = 'SQLSnapshots\'
 , IsActive = 1
WHERE DBName = 'MinionDefault';

Note that the rows with DBName = ‘MinionDefault’ also have FileName = ‘MinionDefault’, meaning that the

settings in these rows apply to all databases, and to all files within a database. See the section “Scenario 4:

Multi file custom snapshots” below for more on multi file custom snapshots.

From this point on, custom snapshots will be created on the D: drive for all databases, and you can see a

record of local snapshot files in Minion.CheckDBSnapshotLog.

Scenario 2: Custom snapshots for a single database
To configure a custom snapshot for a database:

1. Enable custom snapshots: Enter a row into Minion.CheckDBSettingsSnapshot for that database,

with CustomSnapshot=1. (Actually, you need to enter two such rows: one for CheckDB, and one

for CheckTable.)

2. Configure paths: Configure the snapshot file location(s) in Minion.CheckDBSnapshotPath.

For example, to configure custom snapshots for the DB1 database, we first insert rows to the

Minion.CheckDBSettingsSnapshot table:

INSERT INTO Minion.CheckDBSettingsSnapshot
 (DBName, OpName, CustomSnapshot, SnapshotRetMins,
 SnapshotRetDeviation, DeleteFinalSnapshot, IsActive, Comment)
VALUES ('DB1' -- DBName
 , 'CHECKTABLE' -- OpName
 , 1 -- CustomSnapshot
 , 1 -- SnapshotRetMins: This will drop/recreate the snapshot every 1 minute.
 , 1 -- SnapshotRetDeviation
 , 1 -- DeleteFinalSnapshot
 , 1 -- IsActive
 , 'DB1 custom snapshot' -- Comment
),
 ('DB1' -- DBName
 , 'CHECKDB' -- OpName
 , 1 -- CustomSnapshot
 , 0 -- SnapshotRetMins
 , 1 -- SnapshotRetDeviation
 , 1 -- DeleteFinalSnapshot
 , 1 -- IsActive
 , 'DB1 custom snapshot' -- Comment
);

From here, we can either rely on the MinionDefault rows in Minion.CheckDBSnapshotPath, or we can insert

custom rows for DB1:

INSERT INTO Minion.CheckDBSnapshotPath

117

 (DBName, OpName, FileName, SnapshotDrive, SnapshotPath, ServerLabel,
 PathOrder, IsActive, Comment)
VALUES ('DB1' -- DBName
 , 'CHECKTABLE' -- OpName
 , 'DB1Snapshot' -- FileName
 , '\\share1\' -- SnapshotDrive
 , 'SnapshotCheckDB\' -- SnapshotPath
 , NULL -- ServerLabel
 , 0 -- PathOrder
 , 1 -- IsActive
 , 'DB1 snapshot path' -- Comment
),
 ('DB1' -- DBName
 , 'CHECKDB' -- OpName
 , 'DB1Snapshot' -- FileName
 , '\\share1\' -- SnapshotDrive
 , 'SnapshotCheckDB\' -- SnapshotPath
 , NULL -- ServerLabel
 , 0 -- PathOrder
 , 1 -- IsActive
 , 'DB1 snapshot path' -- Comment
);

Scenario 3: Custom dynamic snapshots for a single database
The only difference between custom snapshots for CheckTable, and “rotating” custom dynamic snapshots for

CheckTable – those that drop and recreate every few minutes – is that a rotating snapshot has

“SnapshotRetMins” set to a value greater than zero.

To configure this, follow the directions from Scenario 1 or Scenario 2, above, adding “SnapshotRetMins = 60”

to the Minion.CheckDBSettingsSnapshot insert statement.

Discussion - features:

 You can have a drive for each file, or put them all onto a single drive.

 You can override just one file location if you need. Just put that filename into the Path table and

leave the rest at ‘MinionDefault’.

 If you have several database files, and only one override for a specific filename, and no

MinionDefault row then you'll be in trouble.

For more information, see the section “About: Custom Snapshots”, and the video “Custom Snapshot for

CheckTable” on YouTube: https://youtu.be/1wda8fYBVk4

Scenario 4: Multi file custom snapshots
To configure custom snapshots for all databases:

1. Enable custom snapshots: Update the two MinionDefault rows in Minion.CheckDBSettingsSnapshot,

with CustomSnapshot=1.

https://youtu.be/1wda8fYBVk4

118

2. Configure paths: Configure multiple snapshot file location(s) in Minion.CheckDBSnapshotPath.

First, update Minion.ChekDBSettingsSnapshot to enable custom snapshots:

UPDATE Minion.CheckDBSettingsSnapshot
SET CustomSnapshot = 1
 , DeleteFinalSnapshot = 1
 , IsActive = 1
WHERE DBName = 'MinionDefault';

Note: We strongly recommend you review the settings available in the Minion.CheckDBSettingsSnapshot

table and configure them as needed. In the example above, we have simply enabled custom snapshots and

configured the system to delete the custom snapshot after operations are complete.

Then, insert rows to Minion.CheckDBSnapshotPath for the specific database and files. We want to configure

DB1, and so we insert a row for file DB1_1, file DB1_2, and all other files (FileName=MinionDefault):

INSERT INTO Minion.CheckDBSnapshotPath
 ([DBName]
 , [OpName]
 , [FileName]
 , [SnapshotDrive]
 , [SnapshotPath]
 , [PathOrder]
 , [IsActive]
 , [Comment]
)
SELECT 'DB1' AS [DBName]
 , 'CHECKTABLE' AS [OpName]
 , 'MinionDefault' AS [FileName]
 , 'D:\' AS [SnapshotDrive]
 , 'SnapshotFiles\' AS [SnapshotPath]
 , 0 AS [PathOrder]
 , 1 AS [IsActive]
 , 'DB1 default' AS [Comment]
UNION
SELECT 'DB1' AS [DBName]
 , 'CHECKTABLE' AS [OpName]
 , 'DB1_1' AS [FileName]
 , 'F:\' AS [SnapshotDrive]
 , 'SnapshotFilesDB1\' AS [SnapshotPath]
 , 0 AS [PathOrder]
 , 1 AS [IsActive]
 , 'DB1 file1' AS [Comment]
UNION
SELECT 'DB1' AS [DBName]
 , 'CHECKTABLE' AS [OpName]
 , 'DB1_2' AS [FileName]
 , 'G:\' AS [SnapshotDrive]

119

 , 'SnapshotFilesDB1\' AS [SnapshotPath]
 , 0 AS [PathOrder]
 , 1 AS [IsActive]
 , 'DB1 file2' AS [Comment];

For more information, see the video “Custom Snapshot for Multiple Files” on YouTube:

https://youtu.be/Le43dzFBOVM

 How to: Test schedules
If you use Minion.CheckDBMaster with the @TestDataTime parameter, it should return the ID of the

SettingsServer row that’s applicable. This allows you to make sure your schedules are set up correctly.

If Minion.CheckDBMaster does not return the ID of the row, it either means there is not a row that applies to

that date and time, or that the CurrentNumOps = MaxForTimeFrame for the applicable row (meaning, Minion

CheckDB thinks that nothing should happen, because the maximum number of operations for that row has

been completed already for the given timeframe).

IMPORTANT: To ONLY run the test, and not the actual operations, run with @StmtOnly = 1. For example:

EXEC Minion.CheckDBMaster
 @StmtOnly = 1,
 @TestDateTime = '2017-09-28 18:00';

https://youtu.be/Le43dzFBOVM

120

Troubleshooting

Databases without tables
In Minion CheckDB, only actual work done is logged. If you run CheckTable on a database that doesn’t have

any tables, it will run and nothing will error out, but nothing will be logged.

If you want the operation to be logged for that database, switch to CheckDB instead. Note that this is what

dynamic tuning is for. (MC will detect that the database is not big enough for CheckTable.)

For more information, see “How to: Configure Minion CheckDB Dynamic Thresholds”.

Database that does not exist
If you have an issue with it trying to run MC against a database that does not exist, it’s probably because a

database was dropped and was somehow still left over in the Minion.CheckDBThreadQueue table. The

process tries to clean up after itself, but if the routine is stopped midway for some reason then it won’t have

the chance to do that. If the database had already been processed, then it may show up again in the list and

generate an error. This can cause the jobs to fail, and need to be restarted.

If this happens, empty the Minion.CheckDBThreadQueue work table (if you're not running any other

CheckDB runs at the moment).

Processing some databases but not others
If you are only processing some of the databases, check the following:

 Are there database exclusions in Minion.CheckDBSettingsDB (Exclude = 1)?

 Are there databases that are offline?

 Are all the databases covered with active (IsActive=1) settings in Minion.CheckDBSettingsDB? Make

sure to check the day, BeginTime, and EndTime fields, too.

 Is there an active rotation setting in Minion.CheckDBSettingsRotation table? Set IsActive = 0, and see

if that fixes it.

 Is it possible that some operations are maxing out the server resources? Check the

Minion.CheckDBSettingsDB column DBInternalThreads. If you’re running multiple databases

simultaneously with a high number of threads each, it could under take up too many resources to

complete. Try lowering the number of databases run at the same time, or the number of threads

used, or both.

 Have you attempted to mix incompatible features for some databases? Check out the “About:

Feature Compatibility” section for more information.

121

Not processing the include/exclude as expected
Minion CheckDB has enough options for including and excluding databases and tables to/from operations, it

can get complicated. If you’re working on including or excluding objects from operations, and it’s not going

the way you expect, this is the section for you.

This would be a very big troubleshooting section, so we will keep it to a summary for now.

Subjects to review
 Configuration Settings Hierarchy - Configuration for integrity check operations is stored in tables. A

default row (DBName=’MinionDefault’) in the main settings table provides settings for any database

that doesn’t have its own specific settings. This is a hierarchy of granularity, where more specific

configuration levels completely override the less specific levels.

 Database Include and Exclude Precedence – Minion CheckDB allows you to specify lists of databases

to include in a CheckDB/CheckTable routine, in a couple of different ways.

 Table Include and Exclude Precedence – Minion CheckDB allows you to specify lists of tables to

include in a DBCC CheckTable routine.

 About: Feature Compatibility – It’s possible that incompatible features are interfering with which

objcts are processed.

More notes
If you’re running Minion.CheckDBMaster with some combination of Include, Exclude, Schema, and Tables,

you may not get the behavior you’re expecting. Let’s take an example:

EXEC Minion.CheckDBMaster @DBType = 'User',
 @OpName = 'CHECKTABLE',
 @StmtOnly = 0,
 @ReadOnly = 1,
 @Schemas = N'A,B',
 @Tables = N'T1,T2',
 @Include = N'DB100';

What you might expect from this is for MC to check A.T1, A.T2, B.T1, and B.T2 in database DB100. What you

need to know is that @Schemas and @Tables are complimentary, not co-limiting. In other words, this

statement tells MC to run CheckTables on:

 All tables in schema A, in database DB100.

 All tables in schema B, in database DB100.

 Table T1 (dbo.T1), in database DB100.

 Table T2 (dbo.T2), in database DB100.

So, if you want MC to check just the tables A.T1, A.T2, B.T1, and B.T2 in database DB100, you should run this

(or the table-based equivalent):

122

EXEC Minion.CheckDBMaster @DBType = 'User',
 @OpName = 'CHECKTABLE',
 @StmtOnly = 0,
 @ReadOnly = 1,
 @Schemas = NULL,
 @Tables = N'A.T1, A.T2, B.T1, B.T2',
 @Include = N'DB100';

Time limit is not respected
There are a few things that could make a job run over its time limit. While MC tries to calculate timing as well

as possible, it’s still just an estimate. There are factors that can make it go over:

 Database size – If the database is much bigger than it was before, calculating the estimated time

accurately can be difficult.

 Resources – If the box is far busier than it was during the last operation, it may not have the

resources it did before. That can make it take longer than expected.

 Configuration changes – For example, if you move the snapshot to a slower disk, or if more

databases are running on the same disk then that could slow things down.

 Lots of errors – The more errors that CheckDB finds, the slower it goes. It could take considerably

longer than expected.

 Different threading model (single or multi-threaded) – Even if the resources on the box don’t

change, the most recent operation could be running with a different threading model than the time

before.

We’ve documented how we calculate the time estimate so you can see that it’s not a perfunctory number.

For more information about time limits, see “How to: limit operations by time”.

Estimated time differs from actual time
Why is the estimated time so different from the actual time an operation takes? A lot of it has to do with the

answer in the “Time limit is not respected” section.

Additionally, if the database has never had an integrity check operation in Minion CheckDB before, then

there’s a default time limit you can use to estimate the time. You can configure this in

Minion.CheckDBSettingsDB in the DefaultTimeEstimateMins column. Use it to get a better initial estimate

based on what you know about your environment.

Remote CheckDB isn’t working
If remote CheckDB is not working, check the following:

 Check the requirements list in “About: Remote CheckDB”.

123

 Are you attempting Remote CheckDB for CHECKTABLE operations? Remote CheckDB does not

support CheckTable. See “About: Feature Compatibility”.

 Is the remote SQL Agent on?

 Try setting MC to keep the remote job (DropRemoteJob = 0) and rerun, so you can look at any errors.

 Check the restore statement in the remote job, to see if there is something wrong with the

statement itself.

 Do you have an encrypted backup and you have not restored the certificate?

 Is DropRemoteJob = 0? If you have configured MC to keep jobs after the operation is complete, and

the job has a static name, the remote CheckDB will fail (because the job is already there). Delete MC

jobs on the remote server, set DropRemoteJob = 1, and try again.

 Are you attempting to restore over an existing database without Replace = 1

(Minion.BackupRestoreTuningThresholds)?

 Did the last remote CheckDB fail? Again, the next attempt may be trying to create a job name that

already exists. Delete MC jobs on the remote server and try again.

Database snapshots aren’t being deleted
If custom snapshots aren’t being deleted, check the following:

 Are the operations completing? If not, you’ll have to delete the snapshots manually (and figure out

why the operations are erroring out).

 Have you configured the operations to delete snapshots? If you want snapshots to be deleted

automatically, check the appropriate row in Minion.CheckDBSettingsSnapshot; the column

DeleteFinalSnapshot should be set to 1.

Custom snapshots fail
If you have enabled custom snapshots in Minion.CheckDBSettingsSnapshot (by setting CustomSnapshot = 1),

but suspect they might not be working properly, check the following:

 Custom snapshots enabled – Make sure the applicable row(s) in Minion.CheckDBSettingsSnapshot

actually have CustomSnapshot = 1, and are active (IsActive=1).

 Paths configured – Make sure that rows are configured in Minion.CheckDBSnapshotPath, and that

the rows are active.

 SQL version – It’s possible that your version of SQL Server doesn’t support it. In this case, if

everything is configured correctly, the “custom snapshot” integrity check operations will complete

using the default internal snapshot.

 Incompatible custom snapshots – Are you attempting custom dynamic snapshots for DBCC CheckDB

Operations? (SnapshotRetMins > 0.) This is an incompatible feature for CheckDB. For more

information, see “About: Feature Compatibility”.

 Trying multithreading with custom dynamic – Custom dynamic snapshots for CheckTable are only

available for single-threaded operations. This means that you must set DBInternalThreads in

Minion.CheckDBSettingsDB, and DBInternalThreads in Minion.CheckDBSettingsServer, to 1 for

custom dynamic snapshots.

124

This last “failure” will show up in the log (Minion.CheckDBLogDetails) as follows: DBName and CheckDBName

will be the same, and CustomSnapshot = 1.

SELECT ExecutionDateTime
 , DBName
 , CheckDBName
 , CustomSnapshot
FROM Minion.CheckDBLogDetailsCurrent;

ExecutionDateTime DBName CheckDBName CustomSnapshot

2016-12-16 10:12:49.227 DB1 DB1 1
2016-12-16 10:12:49.227 DB2 DB2 1

2016-12-16 10:12:49.227 DB3 DB3 1

If the custom snapshot had worked properly, we would have seen a different name for CheckDBName – the

name of the snapshot database created.

Minion.CheckDBMaster @TestDateTime does not work
If you use Minion.CheckDBMaster with the @TestDataTime parameter, it should return the ID of the

SettingsServer row that’s applicable. Make sure your schedule is right.

If Minion.CheckDBMaster does not return the ID of the row, it either means there is not a row that applies to

that date and time, or that the CurrentNumOps = MaxForTimeFrame for the applicable row (meaning, Minion

CheckDB thinks that nothing should happen, because the maximum number of operations for that row has

been completed already for the given timeframe).

IMPORTANT: To ONLY run the test, and not the actual operations, run with @StmtOnly = 1. For example:

EXEC Minion.CheckDBMaster @StmtOnly = 1, @TestDateTime = '2016-09-28 18:00';

Check the table Minion.CheckDBSettingsServer:

 Are there active duplicate rows? If you have defined the same Day, BeginTime, and EndTime for an

operation, it’s possible you won’t get the schedule you expect.

For the settings tables Minion.CheckDBSettingsDB, Minion.CheckDBSettingsTable, and

Minion.CheckDBSettingsServer, check that these fields have applicable values:

 BeginTime, EndTime – Perhaps your test time falls outside the defined window of time

 Day – Does your test time fall on a day that’s not defined?

 Include – Do you have settings that apply to the given database?

For the settings table Minion.CheckDBSettingsServer, check that these fields have applicable values:

 Exclude – Is your given database excluded?

 IsActive – Is the appropriate row active?

125

For the settings table Minion.CheckDBSettingsDB, check that these fields have applicable values:

 DBName – There should be an active row with DBName = ‘MinionDefault’ and OpName =

‘CHECKDB’; and an active row with DBName = ‘MinionDefault’ and OpName = ‘CHECKTABLE’.

 Exclude – Is the row marked Exclude=1?

For the settings table Minion.CheckDBSettingsTable, check that these fields have applicable values:

 Exclude – Is the row marked Exclude=1?

Inline Token is not recognized
If you’re trying to use an inline token and it doesn’t work, try these steps:

 Check the table “Minion.DBMaintInlineTokens” for spelling and IsActive=1.

 For default tokens, check that IsCustom in “Minion.DBMaintInlineTokens” is 0.

 For default tokens, check that you’re using percent sign delimiters, e.g. ‘%ServerName%’.

 For custom tokens, check that IsCustom in “Minion.DBMaintInlineTokens” is 1.

 For custom tokens, check that you’re using pipe delimiters, e.g. ‘|MyCustomToken|’.

 Test the token definition code to be sure it’s usable.

 Note that custom inline tokens can't use internal variables (such as @ExecutionDateTime) like the

built-in tokens can. Custom inline tokens can only use SQL functions and @@variables.

126

Revisions
Version Release Date Changes
1.0 February 2017 Initial release.

127

FAQ

Why isn’t the Data Waiter part of Minion CheckDB?
Each database in a high availability scenario (like Availability Groups, or replication, etc.) is a separate entity,

as far as integrity checks are concerned. Corruption could occur on one node of an AG, and it may not

translate to corruption on other nodes of the AG.

Running CheckDB on a secondary node for DB1 does not directly equate to running CheckDB on the

primary node for DB1.

In short, right now we don’t see a huge need for sharing MC settings across nodes. I love you. However, if

enough people need it, we’ve been known to change our minds.

128

About Us
Minion by MidnightDBA is a creation of Jen and Sean McCown, owners of MinionWare, LLC and MidnightSQL

Consulting, LLC.

We formed MinionWare, LLC to create Minion Enterprise: an enterprise management solution for

centralized SQL Server management and alerting. This solution allows your database administrator to

manage an enterprise of one, hundreds, or even thousands of SQL Servers from one central location. Minion

Enterprise provides not just alerting and reporting, but backups, maintenance, configuration, and

enforcement. Go to www.MinionWare.net for details and to request a free 90 day trial.

In our “MidnightSQL” consulting work, we perform a full range of databases services that revolve around SQL

Server. We’ve got over 30 years of experience between us and we’ve seen and done almost everything there

is to do. We have two decades of experience managing large enterprises, and we bring that straight to you.

Take a look at www.MidnightSQL.com for more information on what we can do for you and your databases.

Under the “MidnightDBA” banner, we make free technology tutorials, blogs, and a live weekly webshow

(DBAs@Midnight). We cover various aspects of SQL Server and PowerShell, technology news, and whatever

else strikes our fancy. You’ll also find recordings of our classes – we speak at user groups and conferences

internationally – and of our webshow. Check all of that out at www.MidnightDBA.com

We are both “MidnightDBA” and “MidnightSQL”…the terms are nearly interchangeable, but we tend to keep

all of our free stuff under the MidnightDBA banner, and paid services under MidnightSQL Consulting, LLC.

Feel free to call us the MidnightDBAs, those MidnightSQL guys, or just “Sean” and “Jen”. We’re all good.

http://www.minionware.net/
http://www.midnightsql.com/
http://www.midnightdba.com/

129

Table of Contents
Quick Start ... 1

Customizing Schedules ... 2

Table based scheduling .. 3

Default Settings... 4

Top Features ... 6

Architecture Overview .. 8

Configuration Settings Hierarchy ... 8

Example: Proper Configuration .. 8

Database Include and Exclude Precedence .. 9

Include and Exclude strings .. 9

Exclude bit .. 10

Table Include and Exclude Precedence .. 10

Include Strings .. 10

Exclude Bit .. 11

Run Time Configuration .. 12

Moving Parts ... 13

Overview of Tables ... 13

Settings Table Detail ... 14

Minion.CheckDBSettingsAutoThresholds .. 14

Minion.CheckDBSettingsDB ... 15

Minion.CheckDBSettingsRemoteThresholds ... 25

Minion.CheckDBSettingsRotation .. 26

Minion.CheckDBSettingsServer.. 27

Minion.CheckDBSettingsSnapshot ... 33

Minion.CheckDBSettingsTable ... 35

Minion.CheckDBSnapshotPath .. 39

Minion.DBMaintInlineTokens .. 41

Log Table Detail .. 42

Minion.CheckDBLog ... 42

130

Minion.CheckDBLogDetails .. 44

Minion.CheckDBResult ... 50

Minion.CheckDBSnapshotLog .. 50

Minion.CheckDBCheckTableResult .. 51

Debug Table Detail.. 52

Minion.CheckDBDebug... 52

Minion.CheckDBDebugLogDetails .. 52

Minion.CheckDBDebugSnapshotCreate .. 52

Minion.CheckDBDebugSnapshotThreads .. 53

Work Table Detail ... 53

Minion.CheckDBCheckTableThreadQueue .. 53

Minion.CheckDBRotationDBs ... 53

Minion.CheckDBRotationDBsReload ... 53

Minion.CheckDBRotationTables .. 53

Minion.CheckDBRotationTablesReload ... 53

Minion.CheckDBTableSnapshotQueue .. 53

Minion.CheckDBThreadQueue ... 53

Minion.WorkingForTheWeekend ... 53

Overview of Views .. 54

Overview of Procedures ... 54

Procedures Detail ... 54

Minion.CheckDB ... 54

Minion.CheckDBCheckTable .. 55

Minion.CheckDBCheckTableThreadRunner ... 57

Minion.CheckDBMaster ... 57

Minion.CheckDBRemoteRunner ... 61

Minion.CheckDBRotationLimiter ... 62

Minion.CheckDBSnapshotDirCreate .. 62

Minion.CheckDBSnapshotGet .. 62

Minion.CheckDBStatusMonitor ... 62

Minion.CheckDBThreadCreator ... 62

131

Minion.CloneSettings ... 62

Minion.DBMaintDBSettingsGet.. 63

Minion.DBMaintDBSizeGet .. 64

Minion.DBMaintServiceCheck .. 65

Minion.DBMaintStatusMonitorONOff ... 65

Functions Detail .. 65

Minion.DBMaintSQLInfoGet... 65

Overview of Jobs ... 66

“About” Topics .. 67

About: Minion CheckDB Operations .. 67

CHECKTABLE operations ... 67

Complex scenarios .. 68

About: Feature Compatibility ... 70

About: Scheduling ... 71

Table based scheduling .. 71

Parameter Based Scheduling.. 72

Discussion: Hierarchy and Precedence .. 72

Discussion: Overlapping Schedules, and MaxForTimeframe .. 72

Discussion: Using FrequencyMins .. 73

About: Dynamic Thresholds ... 73

About: Remote CheckDB .. 74

Requirements ... 74

Remote CheckDB modes: Connected vs Disconnected ... 74

Remote Restore Modes .. 74

Dynamic Remote CheckDB ... 75

About: Custom Snapshots .. 75

Custom Dynamic Snapshots ... 76

About: Inline Tokens ... 77

Create and use a custom Inline Token ... 77

Fields that accept Inline Tokens ... 78

Custom Inline Tokens ... 78

132

Inline Token Internals ... 79

About: Multithreading operations ... 79

About: Rotational Scheduling ... 80

Example 1: DBCount rotation ... 80

Example 2: Time rotation ... 81

Rotational Scheduling Internals ... 81

“How To” Topics.. 83

How To: View the results of an operation ... 83

How To: Configure settings for a single database.. 83

How To: Configure settings for all databases .. 85

How To: Process databases in a specific order .. 85

How To: Change schedules ... 87

Table based scheduling .. 87

Parameter based scheduling (traditional approach) ... 88

Hybrid scheduling ... 88

How To: Configure timed settings .. 89

How To: Generate statements only ... 90

How To: Run code before or after integrity checks ... 90

Batch precode and postcode ... 91

Database precode and postcode ... 91

Table precode and postcode .. 93

Statement prefix and suffix .. 95

How To: Include or exclude READ_ONLY databases from integrity checks .. 95

How To: Include databases in operations .. 96

Include databases in table based scheduling... 96

Include databases in traditional scheduling .. 97

How To: Exclude databases from operations .. 99

Exclude a database from all integrity checks ... 99

Exclude databases in table based scheduling .. 100

Exclude databases in traditional scheduling .. 101

How To: Include or exclude tables from operations .. 102

133

Include tables in table based scheduling ... 102

Include tables in traditional scheduling ... 103

How to: Configure Dynamic Thresholds ... 104

How to: Configure Rotational Scheduling .. 106

How to: Set up CheckDB on a Remote Server .. 107

Scenario 1: Remote CheckDB for all databases ... 107

Scenario 2: Remote CheckDB for a single database .. 108

Scenario 3: Remote CheckDB for any database above a certain size ... 109

Scenario 4: Remote CheckDB for all databases, connected mode.. 110

Scenario 5: Remote CheckDB for all databases, using third party restores .. 110

Scenario 6: Remote CheckDB for all databases, using new Minion Backup ... 111

How to: Limit operations by time ... 114

Limit time by parameter ... 114

Limit time using timed rotations .. 114

How to: Configure Custom Snapshots.. 115

Scenario 1: Custom snapshots for all operations .. 115

Scenario 2: Custom snapshots for a single database... 116

Scenario 3: Custom dynamic snapshots for a single database .. 117

Scenario 4: Multi file custom snapshots .. 117

How to: Test schedules ... 119

Troubleshooting .. 120

Databases without tables ... 120

Database that does not exist .. 120

Processing some databases but not others ... 120

Not processing the include/exclude as expected .. 121

Subjects to review .. 121

More notes ... 121

Time limit is not respected ... 122

Estimated time differs from actual time .. 122

Remote CheckDB isn’t working .. 122

Database snapshots aren’t being deleted .. 123

134

Custom snapshots fail ... 123

Minion.CheckDBMaster @TestDateTime does not work .. 124

Inline Token is not recognized .. 125

Revisions.. 126

FAQ .. 127

Why isn’t the Data Waiter part of Minion CheckDB? .. 127

About Us .. 128

Table of Contents .. 129

RESOURCES

Home http://MinionWare.net

Tutorials http://youtube.com/MidnightDBA

Support https://minionware.desk.com/

Scripts by users http://MinionWare.net/CommunityZone/

Sales MinionWareSales@MidnightDBA.com

Twitter https://Twitter.com/HeyMinionWare

Facebook https://www.Facebook.com/MinionWare

http://minionware.net/
http://youtube.com/MidnightDBA
https://minionware.desk.com/
http://minionware.net/CommunityZone/
mailto:MinionWareSales@MidnightDBA.com
https://twitter.com/HeyMinionWare
https://www.facebook.com/MinionWare

